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Abstract. Choiceless Polynomial Time (CPT) is one of the candidates
in the quest for a logic for polynomial time. It is a strict extension of
fixed-point logic with counting (FPC) but to date it is unknown whether
it expresses all polynomial-time properties of finite structures. We study
the CPT-definability of the isomorphism problem for relational struc-
tures of bounded colour class size q (for short, q-bounded structures).
Our main result gives a positive answer, and even CPT-definable canon-
isation procedures, for classes of q-bounded structures with small Abelian
groups on the colour classes. Such classes of q-bounded structures with
Abelian colours naturally arise in many contexts. For instance, 2-bounded
structures have Abelian colours which shows that CPT captures Ptime
on 2-bounded structures. In particular, this shows that the isomorphism
problem of multipedes is definable in CPT, an open question posed by
Blass, Gurevich, and Shelah.

1 Introduction

The quest for a logical characterisation of Ptime remains an important challenge
in the field of finite model theory [10,12]. A natural logic of reference is fixed-
point logic with counting (FPC) which comes rather close to capturing Ptime.
It can express many fundamental graph properties and algorithmic techniques
including for instance by a recent result of Anderson, Dawar and Holm, the
ellipsoid method for linear programs [1]. Moreover, FPC captures Ptime on
many important classes of graphs such as planar graphs and graphs of bounded
tree-width, and more generally, on every class of graphs which excludes a fixed
graph as a minor [13]. More specifically, the aforementioned classes even admit
FPC-definable canonisation which means that FPC can define, given an input
graph, an isomorphic copy of that graph over a linearly ordered universe. Clearly,
if a class of structures admits FPC-definable canonisations, then FPC captures
Ptime on this class, since by the Immerman-Vardi Theorem (see e.g. [10]) fixed-
point logic can define every polynomial-time query on ordered structures. The
technique of definable canonisation will also play a crucial role in this paper.

On the other hand, FPC fails to capture Ptime in general, which was shown
by the CFI-construction of Cai, Fürer and Immerman [6]. Given our current
knowledge, the two main sources of “hard” problems for FPC are tractable
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cases of the graph isomorphism problem and queries from the field of linear
algebra. First of all, the CFI-construction shows that FPC cannot define the
graph isomorphism problem on graphs with bounded degree and with bounded
colour class size. Recall that a graph of colour class size q is a graph coloured
by an ordered set, say natural numbers, where at most q vertices get the same
colour. On the other hand, the graph isomorphism problem is tractable on graphs
with bounded degree or bounded colour class size [3,11,16]. Secondly, Atserias,
Bulatov and Dawar [2] proved that FPC cannot express the solvability of linear
equation systems over finite Abelian groups. Interestingly, also the CFI-query
can be formulated using a linear equation system over Z2 [7].

This observation motivated Dawar, Holm, Grohe and Laubner [7] to introduce
an extension of FPC by operators which compute the rank of definable matrices.
The resulting logic, denoted as rank logic (FPR), is a strict extension of FPC
and capable of defining the solvability of linear equation systems over finite
fields and the CFI-query. Similar extensions of FPC by operators which solve
linear equation systems over finite rings (and not only over finite fields) have
been studied in [8]. It remains open whether one of these extensions suffices to
capture Ptime and specifically, whether it can define the graph isomorphism
problem on graphs of bounded degree and bounded colour class size.

In this paper we focus on Choiceless Polynomial Time (CPT), an extension
of FPC which has been proposed by Blass, Gurevich and Shelah in [4]. Instead
of extending the expressive power of FPC by operators for certain undefinable
queries (such as the rank of a matrix), the basic idea of CPT is to combine the
manipulation of higher order objects (hereditarily finite sets over the input struc-
ture) with a bounded amount of parallel computations. Technically, Choiceless
Polynomial Time is based on BGS-machines (for Blass, Gurevich and Shelah),
a computation model which directly works on relational input structures (and
not on string encodings of those like Turing machines do). As a matter of fact,
computations of BGS-machines have to respect symmetries of the input struc-
ture. Specifically, the set of states in a run of a BGS-program is closed under
automorphisms of the input structure. More informally this means that BGS-
computations are choiceless : it is impossible to implement statements like “pick
an arbitrary element x and continue” which occur in many high-level descriptions
of polynomial-time algorithms (e.g. Gaussian elimination, the Blossom algorithm
for maximum matchings, and so on). On the other hand, BGS-machines are also
very powerful which is due to their ability to construct and manipulate heredi-
tarily finite sets built over the atoms of the input structure. If one imposes no
further restriction on BGS-logic then every decidable class of structures can be
defined in BGS-logic. Thus, to define CPT, the polynomial-time fragment of
BGS-logic, one clearly has to restrict the amount of access a BGS-program has
to the class of hereditarily finite sets.

Choiceless Polynomial Time is a strict extension of FPC [5]. More strikingly,
Dawar, Richerby and Rossman [9] were able to show that CPT can define the
CFI-query. Their very clever construction uses the power of CPT to avoid ar-
bitrary choices by finding succinct (polynomial-time representable) encodings of
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exponential-sized sets of symmetric objects. However, to date, it is not known
whether CPT suffices to capture Ptime, whether it can express the graph iso-
morphism problem for graphs of bounded colour class size or bounded degree,
and similarly, it is open whether CPT can define the solvability of linear equa-
tion systems over finite fields. As a consequence, the relation between rank logic
FPR and Choiceless Polynomial Time CPT remains unclear.

This paper is motivated by the question whether for every fixed q the isomor-
phism problem for relational structures of colour class size q (for short, q-bounded
structures) can be defined in CPT. Our main result gives a positive answer for
classes of q-bounded structures with Abelian colours, i.e. q-bounded structures
where all colour classes induce substructures with Abelian automorphism groups
(we give the formal definition in Section 4). More generally we establish for every
class of q-bounded structures with Abelian colours a CPT-definable canonisation
procedure which shows that CPT captures Ptime on such classes.

Classes of q-bounded structures with Abelian colours naturally arise in many
contexts. First of all, every class of 2-bounded structures has Abelian colours
which in turn shows that CPT captures Ptime on 2-bounded structures. On
the other hand, FPC fails to capture Ptime on this class, since the CFI-query
can easily be formulated using 2-bounded structures. Moreover, this solves an
open question from [5] where the authors ask whether the isomorphism prob-
lem of multipedes is CPT-definable (cf. Question 24 in [5]). Since multipedes
are 2-bounded structures our result shows that the isomorphism problem for
multipedes is CPT-definable.

Another important example arises from generalising the CFI-query for other
Abelian groups than Z2. In particular, in [15] Holm uses such generalisations
(called C-structures) to define a query which separates certain fragments of rank
logics from each other. Interestingly, C-structures are q-bounded structures with
Abelian colours which means that CPT can define the queries used by Holm
which separates CPT from the fragments of FPR considered in [15].

Choiceless Polynomial Time. In this paper, we consider finite structures
A = (A,RA

1 , . . . , R
A
k ) over relational signatures τ = {R1, . . . , Rk}. To define

CPT compactly, we follow Rossman [17]. For a vocabulary τ we define τHF =
τ �{∅,Atoms,Pair,Union,Unique,Card} as the extension of τ by the set-theoretic
function symbols ∅,Atoms (constant symbols), Union,Unique,Card (unary func-
tion symbols) and Pair (binary function symbol). For a set A we denote by HF(A)
the class of hereditarily finite sets over the atoms A, i.e. HF(A) is the least set
with A ⊆ HF(A) and x ∈ HF(A) for every x ⊆ HF(A). A set x ∈ HF(A) is
transitive if for all z ∈ y ∈ x we have z ∈ x. The transitive closure of x ∈ HF(A)
is the least transitive set TC(x) with x ⊆ TC(x).

For a τ -structure A, its hereditarily finite expansion HF(A) is the following
τHF-structure over the universe HF(A) where relations R ∈ τ are interpreted as
in A and the set theoretic functions in τHF \ τ are interpreted as follows:

– ∅HF(A) = ∅, AtomsHF(A) = A, and
– PairHF(A)(x, y) = {x, y}, UnionHF(A)(x) = {y ∈ z : z ∈ x}, and
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– UniqueHF(A)(x) =

{
y, if x = {y}
∅, else,

and CardHF(A)(x) =

{
|x|, x �∈ A

∅, else.
,

where |x| is the cardinality of x encoded as a von Neumann ordinal.

A bijection π : A → A extends to a bijection π′ : HF(A) → HF(A) in a natural
way. If π is an automorphism of A, then π′ is an automorphism of HF(A). BGS-
logic is evaluated over hereditarily finite expansions HF(A) and is defined using
three syntactic elements: terms, formulas and programs.

– Terms are built from variables and functions from τHF using the standard
rules. For an input structure A, terms take values in HF(A). Additionally
we allow comprehension terms : if s(x̄, y) and t(x̄) are terms, and ϕ(x̄, y) is
a formula then r(x̄) = {s(x̄, y) : y ∈ t(x̄) : ϕ(x̄, y)} is a term (in which y is
bound). The value rA(ā) of the term r(x̄) under an assignment ā ⊆ HF(A)
is the set rA(ā) = {sA(ā, b) : b ∈ tA(ā) : HF(A) |= ϕ(ā, b)} ∈ HF(A).

– Formulas can be built from terms t1, t2, . . . , tk as t1 = t2 and R(t1, . . . , tk)
(for R ∈ τ), and from other formulas using the Boolean connectives ∧,∨,¬.

– Programs are triples Π = (Πstep, Πhalt, Πout) where Πstep(x) is a term, and
Πhalt(x) and Πout(x) are formulas. On an input structure A a program Π
induces a run which is the sequence (xi)i≥0 of states xi ∈ HF(A) defined
inductively as x0 = ∅ and xi+1 = Πstep(xi). Let ρ = ρ(A) ∈ N ∪ {∞} be
minimal such that A |= Πhalt(xρ). The output Π(A) of the run of Π on
A is undefined (Π(A) = ⊥) if ρ = ∞ and is defined as the truth value of
A |= Πout(xρ) otherwise.

BGS-programs transform states (objects in HF(A)) until a halting condition
is reached, and produce their output from the ultimately constructed state. To
obtain CPT-programs we put polynomial bounds on both, the complexity of
states and the length of a run. To measure the complexity of objects in HF(A)
we use the size of their transitive closure.

Definition 1. A CPT-program is a pair C = (Π, p(n)) of a BGS-program Π
and a polynomial p(n). The output C(A) on an input structure A is C(A) = Π(A)
if the following resource bounds are satisfied (otherwise we set C(A) = false):

– the length ρ(A) of the run of Π on A is at most p(|A|) and
– for each state in the run (xi)i≤ρ(A) of Π on A it holds that |TC(xi)| ≤ p(|A|).

The main difference to fixed-point logics like FPC is thatCPT can manipulate
higher-order objects from HF(A) which have polynomial size. These objects can
be, for example, clever data structures which succinctly encode exponential-sized
sets, or just exhaustive search trees on small parts of the input. In contrast, FPC
can access only (constant-sized) lists of elements.

Algebra and Permutation Groups. For a set V , we denote by Sym(V ) the
symmetric group acting on V . As usual we use cycle notation (v1 v2 · · · v�) to
specify permutations in Sym(V ). For a permutation group Γ ≤ Sym(V ) and



54 F. Abu Zaid et al.

v ∈ V we write Γ (v) = {γ(v) : γ ∈ Γ} to denote the orbit of v under the action
of Γ . The set of Γ -orbits {Γ (v) : v ∈ V } yields a partition of V . We say that
Γ acts transitively on V if Γ (v) = V for some (equivalently each) v ∈ V . We
read group operations from right to left and use the notation γσ as a shorthand
for σγσ−1 whenever this makes sense (hence (γσ)τ = γτσ). Likewise, we let
σΓ = {σγ : γ ∈ Γ} and Γ σ = {γσ : γ ∈ Γ}.

For a τ -structure A we let Aut(A) ≤ Sym(A) denote the automorphism group
of A. In this paper, Aut(A) will often be Abelian. Recall that every finite Abelian
group is an inner direct sum of cyclic groups of prime power order. For a group
Γ and γ ∈ Γ we denote by 〈γ〉 the cyclic subgroup of Γ generated by γ.

We define linear equation systems over finite rings Zd where d = pk is a
prime-power. Let V be a set of variables over Zd. By Z

V
d we denote the set of

(unordered) Zd-vectors x : V �→ Zd with indices in V . An atomic linear term
is of the form z · v for z ∈ Zd, v ∈ V . A linear term is a set of atomic linear
terms. An assignment is a map α : V → Zd. The value t[α] ∈ Zd of an atomic
linear term t = z · v under α is t[α] = z · α(v). The value t[α] ∈ Zd of a term t
under α is t[α] =

∑
s∈t s[α]. A linear equation is a pair (t, z) where t is a linear

term and z ∈ Zd. An assignment α : V → Zd satisfies e = (t, z) if t[α] = z. A
linear equation system is a set S of linear equations. A linear equation system
S is solvable (or consistent) if an assignment α : V → Zd satisfies all equations
in S. For more background on (linear) algebra and permutation groups see [14].

2 Relational Structures of Bounded Colour Class Size

We describe a procedure to define, given an input structure of bounded colour
class size, an isomorphic copy over an ordered universe (a canonical copy or
canonisation). The idea is to split the input structure into an ordered sequence
of small substructures which can be canonised easily. We then combine these
small canonised parts to obtain a canonisation of the full structure. To guarantee
consistency, we maintain a set of isomorphisms between (the canonised part of)
the input structure and its (partial) canonisation.

A (linear) preorder � of width q ≥ 1 is a reflexive, transitive and total binary
relation where the induced equivalence x ∼ y := (x � y and y � x) only contains
classes of size ≤ q. A preorder � on A induces a linear order on the equivalence
classes A/∼ and we write A = A1 � · · · � An if Ai is the i-th equivalence class
with respect to this linear order. A preorder �′ refines � if x �′ y implies x � y.

Definition 2. Let τ = {R1, . . . , Rk}. A q-bounded τ -structure H is a τ � {�}-
structure H = (H,RH

1 , . . . , R
H
k ,�) where � is a preorder on H of width ≤ q. We

write H = H1 � · · · � Hn and denote by qi := |Hi| ≤ q the size of the i-th colour
class Hi. We set H<

i = {(i, 0), . . . , (i, qi−1)} and write O(Hi) to denote the set of
bijections between Hi and H

<
i , that is O(Hi) = {π : Hi → H<

i , π is a bijection}.

For a class of q-bounded structures we always assume a fixed vocabulary τ .
Thus the arity of all relations is bounded by a constant, say by r. Let P =
P(n, r) denote the set of non-empty subsets I ⊆ {1, . . . , n} of size ≤ r. We can
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define P together with a linear order in CPT (as r is fixed). For I ∈ P we set
HI =

⊎
i∈I Hi and denote by HI ⊆ H the substructure of H induced on HI .

Since r bounds the arity of relations in τ we have H =
⋃

I∈P HI .
We set O(H) = O(H1) × · · · × O(Hn) and O(HI) = O(Hi1 ) × · · · × O(Hi�)

for I = {i1, . . . , i�} ∈ P . Given C ⊆ O(HI) the extension of C to O(H) is the
set ext(C) = {(σ1, . . . , σn) ∈ O(H) : (σi1 , . . . , σi�) ∈ C}.

Every σ ∈ O(H) defines a bijection between H and the ordered set H< =
{(i, j) : 1 ≤ i ≤ n, 0 ≤ j < qi}. The preorder � on H translates to the preorder
σ(�) onH< which is defined as (i, j)σ(�)(i′, j′) if, and only if, i ≤ i′. Specifically,
σ ∈ O(H) defines an isomorphism between the input structure H and the struc-
ture σ(H) = (H<, σ(RH

1 ), . . . , σ(RH
k ), σ(�)). Of course we can apply σ ∈ O(H)

also to substructures of H. In particular for I ∈ P , every σ ∈ O(HI) defines
an isomorphism between HI and σ(HI) = (H<

I , σ(R
HI
1 ), . . . , σ(RHI

k ), σ(�HI ))
whereH<

I = {(i, j) ∈ H< : i ∈ I}. We want to construct, givenH, an isomorphic
copy σ(H) which we call the canonisation or the canonical copy of H.

In general, for different σ, τ ∈ O(H) we have σ(H) �= τ(H). Since the struc-
tures σ(H) and τ(H) are defined over an ordered universe we can distinguish
them in CPT. Moreover, σ(H) = τ(H) holds if, and only if, τ−1σ ∈ Aut(H).

Lemma 3. {τ : τ(H) = σ(H)} = σAut(H) = Aut(σ(H))σ for σ ∈ O(H).

Let I1 < I2 < · · · < Im be the enumeration of P according to the definable
order. We denote by H[1 · · · s] ⊆ H the (not necessarily induced) substructure
of H that consists of the first s components, i.e. H[1 · · · s] = HI1 ∪ · · · ∪ HIs .

Definition 4. An s-canonisation is a canonisation of H[1 · · · s], i.e. a structure
σ(H[1 · · · s]) = σ(HI1)∪· · · ∪σ(HIs) for σ ∈ O(H). A non-empty set C ⊆ O(H)
witnesses an s-canonisation if τ(HIj ) = σ(HIj ) for all σ, τ ∈ C and j = 1, . . . , s.

Since H =
⋃

I∈P HI , an m-canonisation of H also is a canonisation of H. To
describe our generic CPT-canonisation procedure for q-bounded structures, we
assume that we have already preselected for each colour class Hi a set of linear
orderings σiΓi ⊆ O(Hi) where Γi ≤ Sym(Hi) and σi ∈ O(Hi). The group Γ =
Γ1× · · ·×Γn acts on O(H) in the obvious way and for σ = (σ1, . . . , σn) ∈ O(H)
we have σΓ = τΓ for every τ ∈ σΓ . For an index set I = {i1, . . . , i�} ∈ P we
write ΓI to denote the group ΓI = Γi1 × · · · × Γi� and (σΓ )I to denote the set
(σΓ )I = σi1Γi1×· · ·×σi�Γi� ⊆ O(HI). The extension of a set of partial orderings
C ⊆ (σΓ )I to σΓ is the set ext(C) = {(τ1, . . . , τn) ∈ σΓ : (τi1 , . . . , τi�) ∈ C} ⊆
σΓ . The canonisation procedure for q-bounded structures is given below.

Given: q-bounded structure H and sets σiΓi ⊆ O(Hi) for Γi ≤ Sym(Hi), σi ∈ O(Hi)

C0 := σΓ and H<
0 := ∅

for s = 1 to m do

Set I := Is and define Δ := Aut(HI ) ∩ ΓI and D := {τΔ : τ ∈ (σΓ )I}
Fix τΔ ∈ D such that Cs−1 ∩ ext(τΔ) �= ∅ (possible by Lemma 3)

Set Cs := Cs−1 ∩ ext(τΔ) and H<
s := H<

s−1 ∪ τ ′(HI ) for some (all) τ ′ ∈ τΔ

end for

Return: The canonisation H< := H<
m of H
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To express this procedure in CPT, the difficulty is to find suitable represen-
tations for the sets Cs. Clearly, storing them explicitly is impossible as their
size is exponential in the size of the input structure. In the following sections
we establish suitable representations based on linear algebra. We summarise the
requirements for such representations in the following definition.

Definition 5. For explicitly given sets σiΓi ⊆ O(Hi), a CPT-definable rep-
resentation of sets τΔ with Δ ≤ Γ and τ ∈ σΓ is suitable if the following
operations are CPT-definable.

(i) Consistency. Given a representation of τΔ, it is CPT-definable whether
τΔ �= ∅.

(ii) Intersection. Given two representations of sets τ1Δ1 and τ2Δ2, a represen-
tation of the set τ1Δ1 ∩ τ2Δ2 is CPT-definable.

(iii) Representation of basic sets. Given τΔ with τ ∈ (σΓ )I and Δ ≤ ΓI for
I ∈ P, a representation of ext(τΔ) ⊆ σΓ can be defined in CPT.

3 Cyclic Linear Equation Systems over Finite Rings

We proceed to show that the solvability of cyclic linear equation systems (CESs)
over finite rings Zd, where d = pk is a prime power, can be defined in CPT. In
Section 4, we will see that solution spaces of CESs can be used to represent sets
of witnessing isomorphisms as required in Definition 5. Having this connection
a consistency check corresponds to deciding the solvability of a linear equation
system, the intersection operation corresponds to combining the equations of two
linear systems, and the representation of basic sets corresponds to constructing
a linear equation systems over a small set of variables.

Definition 6. Let V be a set of variables over Zd where d is a prime power.

(a) A cyclic constraint on W ⊆ V is a consistent set C of linear equations with
variables in W which contains for every pair v, w ∈ W an equation of the
form v − w = z for z ∈ Zd.

(b) A cyclic linear equation systems (CES) over Zd is a triple (V, S,�) where �
is a preorder on V = V1 � · · · � Vn and S is a linear equation system which
contains for every block Vi a cyclic constraint Ci.

In the definition we do not require that � is of bounded width. However, given
the cyclic constraints Ci ⊆ S we can assume that |Vi| = d for all 1 ≤ i ≤ n.

Lemma 7. Given a CES (V, S,�) over Zd, we can define in CPT a CES
(V ′, S′,�′) over Zd such that V ′ = V ′

1 �′ · · · �′ V ′
n and |V ′

i | = d for all i,
together with a bijection between the set of assignments that satisfy the two CESs.

For z ∈ Zd and v ∈ Vi we denote by v+z ∈ Vi the (unique) variable such that
Ci contains the constraint v

+z−v = z. There are precisely d different assignments
α : Vi → Zd with α |= Ci and each one is determined by fixing the value of a
single variable v ∈ Vi. The crucial ingredient of our CPT-procedure for solving
CESs over Zd is the notion of a hyperterm which is based on the CPT-procedure
of Dawar, Richerby and Rossman for expressing the CFI-query [9].
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Definition 8. Let A be the set of assignments that satisfy all cyclic constraints
Ci, i.e. A := {α : V → Zd : α |= Ci for i = 1, . . . , n}. We inductively define

(i) hyperterms T and associated shifted hyperterms T+z for z ∈ Zd such that
T+(z1+z2) = (T+z1)+z2 for z1, z2 ∈ Zd, and T

+d = T ,
(ii) for assignments α ∈ A the value T [α] ∈ Zd such that T+z[α]− T [α] = z,
(iii) and the coefficient c(Vi, T ) = c(Vi, T

+z) ∈ Zd of variable block Vi in the
hyperterms T, T+1, . . . , T+(d−1).

– For z ∈ Zd we define the hyperterm T = z and set T+y = z + y for y ∈ Zd.
We let c(Vi, T ) = c(Vi, T

+y) = 0 for each variable block Vi and all y ∈ Zd

and let T [α] = z and T+y[α] = z + y for all assignments α ∈ A and y ∈ Zd.
Moreover, for v ∈ Vi, T = v is a hyperterm where T+y = v+y for y ∈ Zd. We
set c(Vj , T ) = c(Vj , T

+y) = 1 for y ∈ Zd if j = i and c(Vj , T ) = c(Vj , T
+y) =

0 otherwise. Finally, we let T [α] = α(v). Then T+y[α] = α(v+y) = α(v)+ y.
– Let Q,R be hyperterms. Then T = Q ⊕ R := {〈Q+z1 , R+z2〉 : z1 + z2 = 0}

is a hyperterm with shifted hyperterm T+y = {〈Q+z1 , R+z2〉 : z1 + z2 = y}
for y ∈ Zd. We set c(Vi, T ) = c(Vi, T

+y) = c(Vi, Q) + c(Vi, R), T [α] :=
Q[α] +R[α] and we have T+y[α] = Q[α] +R[α] + y for α ∈ A.

– Let Q be a hyperterm, z ∈ Zd. Then a new hyperterm T = z�Q := Q⊕· · ·⊕Q
results by applying the ⊕-operation z-times to Q (where we implicitly agree
on an application from left to right). The definitions of T+y, c(Vi, T ) and
T [α] follow from the definition of ⊕.

Definition 9. For α ∈ A, 1 ≤ i ≤ n and z ∈ Zd we define the assignment
αi:+z ∈ A which results from a semantical z-shift of variable block Vi which
means that αi:+z(v) = α(v) + z for v ∈ Vi and αi:+z(v) = α(v) for v �∈ Vi.
Moreover we let πi:+z : Vi → Vi be the syntactic z-shift on the set Vi which is
defined as πi:+z(v) := v+z for v ∈ Vi lifted to a permutation acting on HF(V ).

There is a tight correspondence between the syntactic structure and the in-
tended semantics for hyperterms as expressed in the following lemma.

Lemma 10. Let 1 ≤ i ≤ n, z ∈ Zd, let T be a hyperterm and let c = c(Vi, T ) ∈
Zd be the coefficient of variable block Vi in T .

(a) Then πi:+z(T ) = T+c·z. In particular if c = 0 then πi:+z(T ) = T .
(b) For any assignment α ∈ A we have T [αi:+z] = πi:+z(T )[α].

Intuitively, a hyperterm is a succinct encoding of a class of linear terms that
are (given the cyclic constraints) equivalent. Using the preorder � it is possible
to define in CPT a linearly ordered partition S =

⊎m
i=1 Si of S, correspond-

ing hyperterms T1, . . . , Tm and constants z1, . . . , zm ∈ Zd such that for every
equation (t, z) ∈ Si and α ∈ A we have t[α] = Ti[α] and z = zi (or the CES
is inconsistent). This means that the system S∗ consisting of the ordered set of
hyperequations (Ti, zi) is equivalent to the given CES. Given the linear order on
S∗, we want to use Gaussian elimination in order to determine the solvability of
S∗. As a simple preparation we observe that elementary transformations can be
applied to systems of hyperequations.
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Lemma 11. Let S∗ be a system of hyperequations, and let (T, z), (T ′, z′) ∈ S∗.
Then S∗ and (S∗ \ {(T, z)})∪ {(T ⊕T ′, z+ z′)} have the same solutions (in A).

We assign the m × n-matrix M [S∗] : {1, . . . ,m} × {1, . . . , n} → Zd to the
system S∗ of hyperequations defined as M [S∗](i, j) := c(Vj , Ti). Applying ele-
mentary operations to S∗ as in Lemma 11 corresponds to applying elementary
row operations to M [S∗]. Using a slightly adapted version of Gaussian elimina-
tion (Zd is a ring, not a field) it is possible to transform S∗ such that M [S∗] is
in Hermite normal form. This transformation can be expressed in CPT.

We say that a hyperterm T is atomic if c(Vi, T ) = 0 for every variable block Vi.
By Lemma 10 this means T [α] = T [α′] for all α, α′ ∈ A, hence, T has a constant
value cT = T [α] for some (all) α ∈ A. By exploiting the fact that M [S∗] is in
Hermite normal form it can be shown that the solvability of S∗ can be char-
acterised by determining the consistency of a set of hyperequations (T, z) with
atomic hyperterms T , which is to check whether cT = z.

It remains to express the consistency of hyperequations (T, z) for atomic hy-
perterms T in CPT. This is easy if T is built from constants in Zd.

Lemma 12. The value of a hyperterm T ′ ∈ HF(Zd) can be defined in CPT.

Given an atomic hyperterm T , it remains to construct in CPT an equiva-
lent hyperterm T ′ ∈ HF(Zd). To this end, we crucially make use of the strong
connection between syntax and semantics of hyperterms as stated in Lemma 10.

Lemma 13. Let T ∈ HF(V ) be an atomic hyperterm. Then we can define in
CPT an equivalent hyperterm T ′ ∈ HF(Zd).

Theorem 14. The solvability of CESs over Zd can be defined in CPT.

4 Canonising q-Bounded Structures with Abelian
Colours

We apply the CPT-procedure for solving CESs to show that q-bounded struc-
tures with Abelian colours can be canonised in CPT. Recall that we denote by
Hi the substructure of H induced on the colour class Hi.

Definition 15. A class K of q-bounded τ-structures has Abelian colours if
Aut(Hi) ≤ Sym(Hi) is Abelian for all H ∈ K and colour classes Hi ⊆ H.

Moreover, we say that K allows (CPT-)constructible transitive Abelian sym-
metries if there are CPT-programs which define, given H ∈ K, on each colour
class Hi ⊆ H a transitive Abelian group Γi ≤ Sym(Hi) together with a linear
order on {σΓi : σ ∈ O(Hi)} and a linear order on Γi.

We proceed to show that classes of q-bounded structures with Abelian colours
can be reduced to classes with constructible transitive Abelian symmetries.
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Theorem 16. Let K be a class of q-bounded τ-structures with Abelian colours.
There is a CPT-program which defines, given H ∈ K, a refinement �H

r of the
preorder �H on H such that the class K′ of structures H′ = H[�H \ �H

r ] (which
result from substituting �H by its refinement �H

r ) allows constructible transitive
Abelian symmetries.

The translation H ∈ K �→ H′ ∈ K′ only refines the preorder on H , hence a
canonisation of H′ yields a canonisation of H. Thus, CPT-definable canonisa-
tion procedures on classes of q-bounded structures with constructible transitive
Abelian symmetries provide CPT-definable canonisation procedures on classes
of q-bounded structures with Abelian colours.

Fix a class K of q-bounded structures with constructible transitive Abelian
symmetries. Let H ∈ K with colour classes H = H1 � · · · � Hn and let
Γi ≤ Sym(Hi) denote the associated Abelian transitive groups. To express our
generic canonisation procedure from Section 2 in CPT, it suffices to find CPT-
definable representations of sets τΔ where Δ ≤ Γ and τ ∈ O(H) which satisfy
the requirements of Definition 5. Let us first find appropriate representations for
the basic sets σΔ ⊆ O(Hi) with Δ ≤ Γi and σ ∈ O(Hi) for each colour class Hi.

Lemma 17. Given a set B ⊆ HF(H) with |B| ≤ q and an Abelian transitive
group Γ ≤ Sym(B) which is the direct sum of k cyclic subgroups of prime-power
order, i.e. Γ = 〈δ1〉 ⊕ · · · ⊕ 〈δk〉 for δ1, . . . , δk ∈ Γ where |δi| = di is a prime-
power, and given a set σΓ ⊆ O(B) for σ ∈ O(B) we can define in CPT

– sets W1, . . . ,Wk ⊆ HF(B) with |Wi| = di, an order W1 < W2 < · · · < Wk,
– and if we set Li := Z

Wi

di
and let ei ∈ Li denote the Li-unit vector which

is ei(w) = 1 for all w ∈ Wi, then we can define in CPT an embedding
ϕ : σΓ → L1×· · ·×Lk which respects the action of Γ on σΓ in the following
way. For all τ ∈ σΓ and γ = 
1 · δ1 ⊕ · · · ⊕ 
k · δk ∈ Γ we have that

ϕ(τ ◦ γ) = ϕ(τ) + (
1 · e1, · · · , 
k · ek).

Using the linear order on {σΓi : σ ∈ O(Hi)} we fix for every colour class Hi

a set σiΓi ⊆ O(Hi). Let σΓ = σ1Γ1 × · · · × σnΓn. Using Lemma 17 we write
Γi = 〈δi1〉 ⊕ · · · ⊕ 〈δiki

〉 where |δij | = dij is a prime-power and define in CPT

– sets W i
1 < W i

2 < · · · < W i
ki

of size |W i
j | = dij and for Li

j := Z
W i

j

di
j

embeddings

ϕi : σiΓi → Li
1 × · · · × Li

ki
,

– such that for the Li
j-unit vectors e

i
j ∈ Li

j, each γ = 
1 ·δi1⊕· · ·⊕ 
ki ·δiki
∈ Γi

and each τ ∈ σiΓi it holds that ϕ
i(τ ◦ γ) = ϕi(τ) + (
1 · ei1, . . . , 
ki · eiki

).

We let L = L1
1×· · ·×L1

k1
×· · ·×Ln

1×· · ·×Ln
kn

and combine the mappings ϕi to
get a CPT-definable mapping ϕ : σΓ → L, (τ1, . . . , τn) �→ (ϕ1(τ1), . . . , ϕ

n(τn)).
Since Γ = Γ1 × · · · × Γn = 〈δ11〉 ⊕ · · · ⊕ 〈δ1k1

〉 × · · · × 〈δn1 〉 ⊕ · · · ⊕ 〈δnkn
〉 we also

obtain a definable group embedding ψ : Γ → L as the homomorphic extension
of setting ψ(δij) = eij. For all τ ∈ σΓ and γ ∈ Γ we have ϕ(τ ◦ γ) = ϕ(τ) +ψ(γ).
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Next we analyse for σiΓi the image under ϕ restricted to a component Li
j , i.e.

the set (ϕ(σiΓi) � Li
j) ⊆ Li

j. If we denote by E
i
j := {
 · eij : 0 ≤ 
 ≤ dij − 1} ⊆ Li

j ,

we get Oi
j := (ϕ(σiΓi) � Li

j) = (ϕ(σi) � Li
j) + Ei

j . This means that for two

vectors x, y ∈ Oi
j it holds that x − y ∈ Ei

j . This in turn implies that for all

vectors x, y ∈ Oi
j and indices w,w′ ∈W i

j we have x(w) − x(w′) = y(w)− y(w′).
Hence we can define a cyclic constraint Ci

j on the set W i
j such that Oi

j precisely

corresponds to the set of assignments α :W i
j → {0, . . . , dij − 1} with α |= Ci

j .

Let P := {p1, . . . , ps} be the set of all primes pi such that Γ contains elements
of order pi. For p ∈ P let Γ p

i ≤ Γi denote the subgroup of Γi which consists of
all elements γ ∈ Γi whose order is a power of p. Then Γi = Γ p1

i ⊕ · · · ⊕ Γ ps

i . In
particular we have ψ(Γi) = ψ(Γ p1

i ) + · · ·+ ψ(Γ ps

i ).
Similarly, for any subgroup Δ ≤ Γ and prime p ∈ P we let Δp ≤ Δ denote

the subgroup of Δ which consists of elements δ ∈ Δ whose order is a p-power.
Then Δ = Δp1 ⊕ · · · ⊕Δps and Δp ≤ Γ p

1 × Γ p
2 × · · · × Γ p

n =: Γ p.
We also obtain a corresponding decomposition of L. For p ∈ P we let L[p] =

{(v11 , . . . , v1k1
, . . . , vn1 , . . . , v

n
kn
) ∈ L : if vij �= 0 then dij is a p-power}. Then

ψ(Γ p) ≤ L[p] and L = L[p1]⊕ · · · ⊕ L[ps].
For τ ∈ O(H) and Δ ≤ Γ we let ϕ(τ)L[p] denote the projection of ϕ(τ) ∈ L

onto the component L[p]. Then we have

ϕ(τΔ) = ϕ(τ)L[p1 ] + ψ(Δp1 )⊕ · · · ⊕ ϕ(τ)L[ps] + ψ(Δps) ⊆ L[p1]⊕ · · · ⊕ L[ps].

To represent ϕ(τΔ) it thus suffices to represent each individual component
ϕ(τ)L[p] + ψ(Δp) ⊆ L[p] as the set of solutions of a CES Sp over Zd where d is
a p-power. Using the cyclic constraints Ci

j from above, this is indeed possible.
Altogether we represent a set τΔ with Δ ≤ Γ and τ ∈ σΓ as a sequence of
CESs (Sp1 , . . . ,Sps) where the solutions of Sp correspond to ϕ(τ)L[p] + ψ(Δp).
This representation is suitable with respect to Definition 5:

(i) Consistency. To express whether (Sp1 , . . . ,Sps) represents a non-empty set
we check each Sp for consistency. This is CPT-definable by Theorem 14.

(ii) Intersection. Given two representations of sets τ1Δ1 and τ2Δ2 as sequences
of CESs (Sp1 , . . . ,Sps) and (Tp1 , . . . , Tps), we represent τ1Δ1 ∩ τ2Δ2 by the
sequence (Sp1 ∪Tp1 , . . . ,Sps ∪Tps) where Sp∪Tp is the CPT-definable CES
which results from combining the linear equations of Sp and Tp.

(iii) Representation of basic sets. Given a set ρΔ with ρ ∈ (σΓ )I andΔ ≤ ΓI for
I ∈ P , we get a sequence of CESs (Sp1 , . . . ,Sps) which represents ext(ρΔ)
of ρΔ simply by trying all possible sequences of CESs (this is definable in
CPT since the set of relevant variables is bounded by a constant).

Theorem 18. CPT captures Ptime on classes of q-bounded structures with
constructible transitive Abelian symmetries.

Corollary 19. CPT captures Ptime on classes of q-bounded structures with
Abelian colours, and specifically, on 2-bounded structures.
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5 Discussion

We showed that CPT captures Ptime on classes of q-bounded structures with
Abelian colours. It remains open whether this holds for every class of q-bounded
structures. A natural way to proceed would be to allow more complex groups
acting on the colour classes, for example solvable groups. In fact, we can modify
our techniques to show that 3-bounded structures can be canonised in CPT.

Another question is whether CPT can define the solvability of linear equation
systems over finite rings. A positive answer would render rank logic FPR [7] and
solvability logic [8] a fragment ofCPT, and otherwise, we would have a candidate
for separating CPT from Ptime. It is also interesting to investigate how far our
canonisation procedures for CPT can be expressed in such extensions of FPC by
operators from linear algebra. For example, it is easy to see that our canonisation
procedure for 2-bounded structures can be expressed in FPR.

We also want to study CPT on other classes of graphs with polynomial-time
canonisation algorithms on which FPC fails to capture Ptime. Important exam-
ples are graphs of bounded degree or graphs of moderately growing treewidth.
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