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Abstract

Finite-domain constraint satisfaction problems are either

solvable by Datalog, or not even expressible in fixed-point

logic with counting. The border between the two regimes can

be described by a strong height-one Maltsev condition. For

infinite-domain CSPs, the situation is more complicated even

if the template structure of the CSP is model-theoretically

tame. We prove that there is no Maltsev condition that char-

acterizes Datalog already for the CSPs of first-order reducts

of (Q;<); such CSPs are called temporal CSPs and are of

fundamental importance in infinite-domain constraint satis-

faction. Our main result is a complete classification of tem-

poral CSPs that can be expressed in one of the following

logical formalisms: Datalog, fixed-point logic (with or with-

out counting), or fixed-point logic with the Boolean rank

operator. The classification shows that many of the equiva-

lent conditions in the finite fail to capture expressibility in

Datalog or fixed-point logic already for temporal CSPs.

CCS Concepts: • Theory of computation→ Constraint

and logic programming;Design and analysis of algorithms;
Randomness, geometry and discrete structures.
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1 Introduction

The quest for finding a logic capturing Ptime is an ongoing

challenge in the field of finite model theory originally moti-

vated by questions from database theory [29]. Ever since its

proposal, most candidates are based on various extensions

of fixed-point logic (FP), for example by counting or by rank
operators. Though not a candidate for capturing Ptime, Dat-
alog is perhaps the most studied fragment of FP. Datalog is

particularly well-suited for formulating various algorithms

for solving constraint satisfaction problems (CSPs); examples

of famous algorithms that can be formulated in Datalog are

the arc consistency procedure and the path consistency proce-

dure. In general, the expressive power of FP is limited as it

fails to express counting properties of finite structures such

as even cardinality. However, the combination of a mecha-

nism for iteration and a mechanism for counting provided

by fixed-point logic with counting (FPC) is strong enough

to express most known algorithmic techniques leading to

polynomial-time procedures [19, 28]. In fact, all known de-

cision problems for finite structures that provably separate

FPC from Ptime are at least as hard as deciding solvability of

systems of linear equations over a non-trivial finite Abelian

group [44]. If we extend FPC further to by the Boolean rank
operator [28], we obtain the logic FPR2 which is known to

capture Ptime for Boolean CSPs [45].

Proving inexpressibility results for FPR2 seems to be very

difficult. The first inexpressibility result for FPC is due to Cai,

Fürer and Immerman for systems of linear equations over

Z2 [16]. In 2009, this result was extended to arbitrary non-

trivial finite Abelian groups by Atserias, Bulatov and Dawar

[1]; their work was formulated purely in the framework of

CSPs. At around the same time, Barto and Kozik [4] settled

the closely related bounded width conjecture of Larose and

Zádori [37]. A combination of both works together with

results from [35, 39] yields the following theorem.

Theorem 1.1 ([1, 4, 35, 39]). For a finite structure B, the
following six statements are equivalent.

1. CSP(B) is expressible in Datalog.
2. CSP(B) is expressible in FP.
3. CSP(B) is expressible in FPC.
4. B does not pp-construct linear equations over any non-

trivial finite Abelian group.
5. B has weak near-unanimity polymorphisms for all but

finitely many arities.

https://doi.org/10.1145/3373718.3394750
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6. B has weak near-unanimity polymorphisms f ,д that
satisfy the 3-4 equation д(x, x,y) ≈ f (x, x, x,y).

In particular, Datalog, FP, and FPC are equally expressive

when it comes to finite-domain CSPs. This observation raises

the question whether there are natural classes of CSPs where

the above-mentioned fragments and extensions of FP do not

collapse. In fact, this question was already answered posi-

tively in 2007 by Bodirsky and Kára for the CSPs of first-order

reducts of (Q;<), also known as (infinite-domain) temporal

CSPs [11]; the decision problem CSP(Q; Rmin), where

Rmin B {(x,y, z) ∈ Q3 | x > y ∨ x > z},

is provably not solvable by any Datalog program [12] but

it is expressible in FP, as we will see later. Since every CSP

formally represents a class of finite structures whose com-

plement is closed under homomorphisms, this also yields

an alternative proof of a result from [21] stating that the

homomorphism preservation theorem fails for FP.

We present a complete classification of temporal CSPs

that can be solved in Datalog, FP, FPC, or FPR2. Several fa-

mous NP-hard problems such as the Betweenness problem or

the Cyclic Ordering problem are temporal CSPs. Temporal

CSPs have been studied, e.g., in artificial intelligence [40],

Scheduling [12], and approximation [31]. Random instances

of temporal CSPs have been studied in [25]. Temporal CSPs

also play a particular role for the theory of infinite-domain

CSPs since the important technique of reducing infinite-

domain CSPs to finite-domain CSPs [13] cannot be used to

prove polynomial-time tractability results for this class. The

classification leads to the following sequence of inclusions

for temporal CSPs:

Datalog ⊊ FP = FPC ⊊ FPR2 = Ptime

Our results show that the expressibility of temporal CSPs

in these logics can be characterized in terms of avoiding

pp-constructibility of certain structures. If a structure can

pp-construct the complete graph on three vertices, K3, then

its CSP is not expressible in any of the listed logics. If a

structure can pp-construct (Q; Rmin) (see the paragraph be-

low Theorem 1.1), then its CSP is not expressible in Datalog;

conversely, if a temporal CSP can pp-construct neither K3

nor (Q; Rmin), then it is contained in Datalog. We show that

a temporal CSP is expressible in FP and in FPC iff it can

pp-construct neither K3 nor (Q; X) where

X B {(x,y, z) ∈ Q3 | x = y < z ∨ x = z < y ∨ y = z < x}

Finally, we show that FPR2 captures polynomial time on

temporal CSPs (unless P=NP).

Our results also show that every temporal CSP with a

template that pp-constructs (Q; X) but not all finite structures
is solvable in polynomial time, is not expressible in FPC, and

cannot encode linear equation constraints over any non-

trivial finite Abelian group. Such temporal CSPs are Datalog

equivalent to the following decision problem:

3-Ord-Xor-Sat

INPUT: A finite set of homogeneous linear Boolean

equations of length 3.

QUESTION: Does every non-empty subset S of the

equations have a solution where at least one variable

occurring in an equation from S denotes the value 1.

We have eliminated the following candidates for general

algebraic criteria for expressibility of CSPs in FP (Section 7):

• the inability to pp-construct linear equations over a

non-trivial finite Abelian group [1],

• the 3-4 equation for weak near-unanimity polymor-

phisms modulo outer endomorphisms [13],

• the existence of weak near-unanimity polymorphisms

modulo outer endomorphisms for all but finitely many

arities [4].

We have good news and bad news regarding the existence of

general algebraic criteria for expressibility of CSPs in frag-

ments and/or extensions of FP. The bad news is that there

is no Maltsev condition that would capture expressibility

of temporal CSPs in Datalog (see Theorem 7.2) which car-

ries over to CSPs of reducts of finitely bounded homogeneous
structures and more generally to CSPs of ω-categorical tem-

plates. This is particularly striking because ω-categorical
CSPs are otherwise well-behaved when it comes to express-

ibility in Datalog—every ω-categorical CSP expressible in

Datalog admits a canonical Datalog program [9]. The ques-

tion which ω-categorical CSPs are in Datalog is the cen-

tral theme in the survey article [10]. The good news is that

there is a strong height-one Maltsev condition that charac-

terises the expressibility in FP for finite-domain and temporal

CSPs (Theorem 7.8). It is based on a family Ek ,n of strong

height-one Maltsev conditions closely related to the dissected
weak near-unanimity identities introduced in [3, 24]; the set

of polymorphisms of every first-order reduct of a finitely

bounded homogeneous structure known to the authors (in

particular of the examples from Theorem 1.3 in [14]) satisfies

Ek ,k+1 for all but finitely many k iff its CSP is in FP.

2 Preliminaries

We need various notions from model theory, constraint satis-

faction, and universal algebra. The set {1, . . . ,n} is denoted
by [n]. We use the boldface notation for tuples and matrices;

for a tuple t indexed by a set I , the value of t at the position
i ∈ I is denoted by t[i].

2.1 Structures

A (relational) signature τ is a set of relation symbols, each
with an associated natural number called arity, and constant
symbols. A (relational) τ -structure A consists of a set A (the

domain) together with the relations RA ⊆ Ak
for each rela-

tion symbol R ∈ τ of arity k and the constants cA ∈ A for each

constant symbol c ∈ τ . We often describe structures by list-

ing their domain, relations, and constants, that is, we write
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A = (A;RA
1
, . . . , cA

1
, . . . ). An expansion of A is a σ -structure

B with A = B such that τ ⊆ σ , RB = RA for each relation

symbol R ∈ τ , and cB = cA for each constant symbol c ∈ τ .
Conversely, we call A a reduct of B.
A homomorphism h : A → B for τ -structures A,B is a

mapping h : A → B that preserves each constant and each

relation of A, that is, h(cA) = cB holds for every constant

symbol c ∈ τ and if t ∈ RA for some k-ary relation symbol

R ∈ τ , then (h(t[1]), . . . ,h(t[k])) ∈ RB. We write A → B if A

homomorphically maps to B and A ↛ B otherwise. We say

that A and B are homomorphically equivalent if A → B and

B → A. An endomorphism is a homomorphism from A to

A. By an embedding we mean an injective homomorphism

e : A → B that additionally satisfies the following condition:

for every k-ary relation symbol R ∈ τ and t ∈ Ak
we have

(h(t[1]), . . . ,h(t[k])) ∈ RB only if t ∈ RA .We write A ↪→ B
if A embeds to B. An isomorphism is a surjective embedding.

Two structures A and B are isomorphic if there exists an iso-

morphism from A toB. An automorphism is an isomorphism

from A to A. A substructure of A is a structure B over B ⊆ A
such that the inclusion map i : B → A is an embedding.

An n-ary polymorphism of a relational structure A is a

mapping f : An → A such that for every constant symbol

c ∈ τ we have f (cA, . . . , cA) = cA , and for every k-ary re-

lation symbol R ∈ τ and tuples t1, . . . , tn ∈ RA we have(
f (t1[1], . . . , t1[n]), . . . , f (tk[1], . . . , tk[n])

)
∈ RA .We say that

f preserves A to indicate that f is a polymorphism of A. We

might also say that an operation preserves a relation R over

A if it is a polymorphism of (A;R).

2.2 Model theory

A short and precise definition of the notion of a logic can
be found in [29]. We assume that the reader is familiar with

classical first-order logic (FO); we allow the first-order for-

mulas x = y and ⊥. A first-order τ -formula ϕ is primitive
positive (pp) if it is of the form ∃x1, . . . , xm(ϕ1 ∧ · · · ∧ ϕn),
where each ϕi is atomic, that is, of the form ⊥, xi = x j , or
R(xi1, . . . , xiℓ ) for some R ∈ τ . For a τ -structure A and a

set of FO τ -formulas Θ, we say that an n-ary relation has a

Θ-definition in A if it is of the form {t ∈ An | A |= ϕ(t)} for
some ϕ ∈ Θ. The following statement follows a well-known

principle that connects logic and algebra.

Proposition 2.1 ([32]). Let A be a relational structure.

1. Every relation over A with a FO-definition in A is pre-
served by all automorphisms of A.

2. Every relation over A with a pp-definition in A is pre-
served by all polymorphisms of A.

The set of all automorphisms of A, denoted by Aut(A),

forms a permutation group w.r.t. the map composition [32].

The orbit of a tuple t ∈ Ak
under the natural action of Aut(A)

on Ak
is the set {(д(t[1]), ...,д(t[k])) | д ∈ Aut(A)}. A struc-

ture is ω-categorical if its first-order theory has exactly one

countable model up to isomorphism. The theorem of En-

geler, Ryll-Nardzewski, and Svenonius (Theorem 6.3.1 in

[32]) asserts that the following statements are equivalent for

a countably infinite structure A with countable signature:

• A is ω-categorical.
• Every relation preserved by all automorphisms of A

has a FO-definition in A.

• For every k ≥ 1, there are only finitely many orbits of

k-tuples under the natural action of Aut(A).

A structure A is homogeneous if every isomorphism between

finite substructures of A extends to an automorphism of A.

Every homogeneous structure with a finite relational signa-

ture is ω-categorical [32]. A structure A is finitely bounded
if there is a universal first-order sentence ϕ such that a finite

structure embeds into A iff it satisfies ϕ. A prime example of

a finitely bounded homogeneous structure is (Q;<) [13].

Definition 2.2 (Counting, finite variable logics [2, 43]). By

FOC we denote the extension of FO by the counting quanti-

fiers ∃i . If A is a τ -structure and ϕ a τ -formula with a free

variable x , then A |= ∃ix .ϕ(x) iff there exist i distinct a ∈ A
such that A |= ϕ(a). While FOC is not more expressive than

FO, the presence of counting quantifiers might affect the

number of variables that are necessary to define a particu-

lar relation. We denote the fragment of FO in which every

formula has at most k variables by Lk , and its existential pos-
itive fragment by ∃+Lk . We write A ⇒k B if every sentence

of ∃+Lk that is true in A is also true inB. The k-variable frag-
ment of FOC is denoted by Ck

. We write A ≡Ck B if every

sentence of Ck
is true in A iff it is true in B. The infinitary

logic Lk∞ω extends Lk with infinite disjunctions and conjunc-

tions. The extension of Lk∞ω by the counting quantifiers ∃i

is denoted by Ck
∞ω . We write A ≡Ck

∞ω
B if every sentence of

Ck
∞ω is true in A iff it is true in B.

2.3 Fixed-point logic

Inflationary fixed-point logic (IFP) is defined by adding for-

mation rules to FO whose semantics is defined with inflation-

ary fixed-points of arbitrary operators, and least fixed-point
logic (LFP) is defined by adding formation rules to FO whose

semantics is defined using least fixed-points of monotone

operators. The logics LFP and IFP are equivalent in the sense

that they define the same relations over the class of all struc-

tures [36]. For this reason, they are both commonly referred

to as FP (see, e.g., [2]).

Datalog is usually understood as the existential positive

fragment of LFP (see [21]). The existential positive fragments

of LFP and IFP are equivalent, because the fixed-point op-

erator induced by a formula from either of the fragments is

monotone, which implies that its least and inflationary fixed-

point coincide (see Proposition 10.3 in [38]). This allows us

to define Datalog as the existential positive fragment of FP.

For the definitions of the counting extensions IFPC and

LFPC we refer the reader to [26]. One important detail is
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that the equivalence LFP ≡ IFP extends to LFPC ≡ IFPC (see

p. 189 in [26]). Again, we refer to both counting extensions

simply as FPC. It is worth mentioning that the extension of

Datalog with counting is also equivalent to FPC [27]. In the

following, all we need to know about FPC is Theorem 2.3.

Theorem 2.3 (Immerman and Lander [19]). For every FPC

sentenceϕ,A ≡Ck B impliesA |= ϕ ⇔ B |= ϕ for some k ∈ N.

This result follows from the fact that for every FPC formula

ϕ there exists k such that, on structures with at most n ele-

ments, ϕ is equivalent to a formula of Ck
whose quantifier

depth is bounded by a polynomial function of n [19]. Clearly

A ≡Ck
∞ω
B implies A ≡Ck B. The difference here is that every

formula of FPC is actually equivalent to a formula of Ck
∞ω

for some k , that is, FPC forms a fragment of the infinitary

logic Cω
∞ω B

⋃
k ∈NC

k
∞ω (Corollary 4.20 in [43]).

The logic FPR2 extends FPC by the Boolean rank operator

rk, making it the most expressive logic explicitly treated in

this paper. Intuitively, rk is a logical constructor that can be

used to form a rank term [rkx ,yϕ(x,y)] from a given formula

ϕ(x,y). The value of [rkx ,yϕ(x,y)] in an input structure A is

the rank of a Boolean matrix specified by ϕ(x,y) through its

evaluation in A. For instance, [rkx ,y (x = y)∧ϕ(x)] computes

in an input structure A the number of elements a ∈ A such

thatA |= ϕ(a) for a given formulaϕ(x) [20]. The satisfiability
of a suitably encoded system of Boolean linear equations

Ax = b can be tested in FPR2 by comparing the rank of A
with the rank of the extension of A by b as a last column. A

thorough definition of FPR2 can be found in [20, 28].

2.4 CSPs in general

Let B be a structure with finite relational signature τ . The
constraint satisfaction problem CSP(B) is the computational

problem of deciding whether a given finite τ -structure A
maps homomorphically toB. We callB a template of CSP(B).
Formally, we denote by CSP(B) the class of all finite τ -
structures that homomorphically map to B. The CSP of

a τ -structure B is expressible in a logic L if there exists

a sentence ϕB in L that defines the complementary class

co-CSP(B) of all finite τ -structures which do not homomor-

phically map to B. A solution for an instance A of CSP(B) is

a homomorphism A → B.

Definition 2.4 (Interpretation, reducibility). Let σ , τ be fi-

nite relational signatures and Θ a set of FPR2 formulas with

first-order free variables only. A Θ-interpretation of τ in σ
is a tuple I of σ -formulas from Θ consisting of a distin-

guished d-ary domain formula δI(x1, . . . , xd ) and, for each
n-ary atomic τ -formula ϕ(x1, . . . , xn), an (n · d)-ary formula

ϕI(x1, . . . , xn ·d ). A τ -structure B has an Θ-interpretation in
a σ -structure A if there is an Θ-interpretation I of τ in σ
and a surjective coordinate map h : {t ∈ Ad | A |= δI(t)} →
B such that, for every atomic τ -formula ϕ(x1, . . . , xn) and
all t1, . . . , tn ∈ Ad

, we have B |= ϕ(h(t1), . . . ,h(tn)) iff

A |= ϕI(t1[1], . . . , t1[d], . . . , tn[1], . . . , tn[d]). If h is the iden-

tity map, then we write B = I(A). Let B be a σ -structure
and A a τ -structure. We write CSP(B) ≤Θ CSP(A) and say

that CSP(B) reduces to CSP(A) under Θ-reducibility if there

exists a Θ-interpretation I of τ in σ ∪ {c1, . . . , ck } for some

constant symbols c1, . . . , ck fresh w.r.t. σ such that, for every

σ -structure D with |D | ≥ k , we have D→ B iff I(C) → A

for some σ ∪ {c1, . . . , ck }-expansion C of D by distinct con-

stants iff I(C) → A for every σ ∪ {c1, . . . , ck }-expansion C
of D by distinct constants.

Both Θ-reducibility and Θ-interpretability, seen as binary

relations, are transitive if Θ is any of the standard logical

fragments or extensions of FO we have mentioned so far. The

following reducibility result was obtained in [1] for finite-

domain CSPs. A close inspection of the original proof reveals

that the statement holds for infinite-domain CSPs as well.

Theorem 2.5 (Atserias, Bulatov, and Dawar [1]). Let A and
B be structures with finite relational signatures such that B is
pp-interpretable in A. Then CSP(B) ≤Datalog CSP(A).

Clearly, the requirement of pp-interpretability in Theo-

rem 2.5 can be replaced with the more general notion of

pp-constructibility [5, 14]. A relational structureB can be pp-
constructed from A if there exists a sequence C1, C2, . . . ,Ck
such that C1 = A, Ck = B and, for every 1 ≤ i < k , Ci admits

a pp-interpretation of Ci+1, or Ci is homomorphically equiv-

alent to Ci+1. What is not clear is whether ≤Datalog actually

preserves the expressibility of CSPs in Datalog / FP / FPC /

FPR2, since [1] only states so forC
ω
∞ω . This is indeed true, see

Corollary 2.6; the proof of the second part of Corollary 2.6 is

elementary in all cases except for Datalog where it relies on

Theorem 2 from [23].

Corollary 2.6. Let A and B be structures with finite rela-
tional signatures such that B can be pp-constructed from A.
Then CSP(B) ≤Datalog CSP(A). Moreover, ≤Datalog preserves
the expressibility of CSPs in Datalog, FP, FPC, or FPR2.

We now introduce a formalism that simplifies the presen-

tation of known algorithms for TCSPs.

Definition 2.7 (Projections of instances). Let B be a struc-

ture with finite relational signature τ and A an instance of

CSP(B). Let R be an n-ary symbol from τ . The projection
of RB to I ⊆ [n], denoted by prI (R

B), is the |I |-ary relation

defined in B by the pp-formula ∃j ∈[n]\Ix j .R(x1, . . . , xn).We

call it proper if I , ∅, and trivial if it represents the relation
B |I |

. In this paper, we assume that the set of relations of B is

always closed under taking projections, that is, we assume

that τ contains symbols prIR for all possible projections

prI (R
B). Note that this convention neither leads to a differ-

ent set of polymorphisms for B (Proposition 2.1) nor does

it influence the expressibility of CSP(B) in any of the logics

Datalog, FP, FPC, or FPR2 (Corollary 2.6). The projection of

A to V ⊆ A is the τ -structure prV (A) obtained as follows.



Temporal CSPs in FP LICS ’20, July 8–11, 2020, Saarbrücken, Germany

For every n-ary symbol R ∈ τ and every tuple t ∈ RA , we
remove t from RA and add the tuple prI (t) to (prIR)

A
for

I B {i ∈ [n] | t[i] ∈ V }. Then we replace the domain with V .

2.5 Temporal CSPs

A temporal constraint language (TCL) is a structure B with

domain Q all of whose relations are FO-definable in (Q;<).
As the structure (Q;<) is homogeneous, every order preserv-

ing map between two finite subsets of Q can be extended

to an automorphism of all TCLs due to Proposition 2.1. The

relations of a TCL are called temporal. The dual of a k-ary
temporal relation R is defined as {(−t[1], . . . ,−t[k]) | t ∈ R}.
The dual of a TCL is the TCL whose relations are precisely

the duals of the relations of the original one. Note that every

TCL is homomorphically equivalent to its dual via x 7→ −x ,
which means that both structures have the same CSP. The

CSP of a TCL is called a temporal CSP (TCSP).

Definition 2.8 (Min-sets and free sets). We define the min-
indicator function χ : Qk → {0, 1}k by setting χ (t)[i] B 1

iff t[i] is a minimal entry in t ; we call χ (t) ∈ {0, 1}k the

min-tuple of t ∈ Qk . The min-set of a tuple t ∈ Qk is defined

as the set {i ∈ [k] | χ (t)[i] = 1}. Let B be a TCL and A an

instance of CSP(B). A free set of A is a non-empty subset

F ⊆ A such that, for every k-ary tuple t ′ ∈ RA , either no
entry of t ′ is contained in F , or there exists a tuple t ∈ RB

which has the set {i ∈ [k] | t ′[i] ∈ F } as its min-set.

2.6 Clones

The set of all polymorphisms of a relational structure A,

denoted by Pol(A), forms an algebraic structure called a clone
w.r.t. compositions for maps of all arities. For instance, the

clone Pol({0, 1}; 1IN3) where 1INk B {t ∈ {0, 1}k | t[i] = 1

for exactly one i ∈ [k]} consists of all projection maps on

{0, 1}, and is called the projection clone [3].

Definition 2.9. A map ξ : Pol(A) → Pol(B) for structures

A and B is called

• a clone homomorphism (or we say that ξ preserves iden-
tities) if it preserves arities, projections, and composi-

tions, that is, ξ (f (д1, . . . ,дn)) = ξ (f )(ξ (д1), . . . , ξ (дn)))
holds for all n-ary f andm-ary д1, . . . ,дn from Pol(A),

• a h1 clone homomorphism (or we say that ξ preserves h1
identities) if it preserves arities, projections and those

compositions where д1, . . . ,дn are projections,

• uniformly continuous if for all finite B′ ⊆ B there exists

a finite A′ ⊆ A such that if f ,д ∈ Pol(A) of the same

arity agree on A′
, then ξ (f ) and ξ (д) agree on B′

.

In the language of clones, the recently closed finite-domain

CSPs tractability conjecture can be reformulated as follows:

the polymorphism clone of a finite structure A either admits

a height-one (h1) clone homomorphism to the projection

clone in which case CSP(A) is NP-complete, or it does not

and CSP(A) is polynomial-time tractable [5]. The former is

the case iff A pp-constructs all finite structures. For detailed

information about clones and clone homomorphisms we

refer the reader to [5, 14].

2.7 Polymorphisms of TCLs

The following notions were used in the P versus NP-complete

complexity classification of TCSPs [11]. Let min denote the

binary minimum operation on Q. The dual of a k-ary oper-

ation f on Q is the map (x1, . . . , xk ) 7→ −f (−x1, . . . ,−xn).
Let us fix any endomorphisms α, β,γ of (Q;<) such that

α(x) < β(x) < γ (x) < α(x + ε) for every x ∈ Q and every

ε ∈ Q>0. Such unary operations can be constructed induc-

tively, see the paragraph below Lemma 26 in [11]. Then mi

is the binary operation on Q defined by

mi(x,y) B


α(min(x,y)) if x = y,
β(min(x,y)) if x > y,
γ (min(x,y)) if x < y,

and mx is the binary operations on Q defined by

mx(x,y) B

{
α(min(x,y)) if x , y,
β(min(x,y)) if x = y.

The main property of the operations mi and mx is that they

both refine the kernel of the binary minimum operation on

Q. Let ll be an arbitrary binary operation on Q such that

ll(a,b) < ll(a′,b ′) if

• a ≤ 0 and a < a′, or
• a ≤ 0 and a = a′ and b < b ′, or
• a,a′ > 0 and b < b ′, or
• a > 0 and b = b ′ and a < a′.

Theorem 2.10 (Bodirsky and Kára [11, 15]). LetB be a TCL.
EitherB is preserved bymin,mi,mx, ll, the dual of one of these
operations, or a constant operation and CSP(B) is in P, or B
pp-constructs all finite structures and CSP(B) is NP-complete.

There are two additional operations that appear in correct-

ness proofs of algorithms for TCSPs; pp is an arbitrary binary

operation onQ that satisfies pp(a,b) ≤ pp(a′,b ′) iff a ≤ 0 and

a ≤ a′, or 0 < a, 0 < a′, and b ≤ b ′, and lex is an arbitrary

binary operation onQ that satisfies lex(a,b) < lex(a′,b ′) iff
a < a′, or a = a′ and b < b ′. If a TCL is preserved by min,mi,
or mx, then it is preserved by pp, and if a TCL is preserved

by ll, then it is preserved by lex [11].

3 Fixed-point algorithms for TCSPs

In this section, we discuss the expressibility in FP for some

particularly chosen TCSPs that are provably in P. By Theo-

rem 2.10, a TCSP is polynomial-time tractable if its template

is preserved by one of the operations min,mi,mx, or ll. In
the case of min, the known algorithm from [11] can be for-

mulated as an FP algorithm. In the case of mi, the known

algorithm from [11] cannot be implemented in FP as it in-

volves choices of arbitrary elements. We show that there

exists a choiceless version that can be turned into an FP
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sentence. In the case of ll, the known algorithm from [12]

cannot be implemented in FP for the same reason as in the

case of mi. Again, we show that there exists a choiceless

algorithm. In the case of mx, the known algorithm from [11]

cannot be turned into an FP sentence because it relies on the

use of linear algebra. We show in Section 4 that, in general,

the CSP of a TCL preserved by mx cannot be expressed in

FP but it can be expressed in the logic FPR2.

We first describe a procedure for temporal languages pre-

served by pp as it appears in [11], and then the choiceless

version that is necessary for translation into an FP sentence.

Let A be an instance of CSP(B). The original procedure

searches for a non-empty set S ⊆ A for which there exists a

solution A → B under the assumption that the projection

of A to A \ S has a solution as an instance of CSP(B). It was

shown in [11] that S has this property if it is a free set of A,

and that A ↛ B if no free set of A exists. We improve the

original result by showing that the same holds if we replace

“a free set” in the statement above with “a non-empty union

of free sets”.

Proposition 3.1. Let A be an instance of CSP(B) for some
TCL B preserved by pp and S a union of free sets of A. Then A
has a solution iff prA\S (A) has a solution.

The above proposition leads to the desired choiceless ver-

sion of the original algorithm. Suitable Ptime procedures

for finding unions of free sets for TCSPs with a template

preserved by min, mi, ll, or mx exist by the results of [11],

and they generally exploit the algebraic structure of the CSP

that is witnessed by one of these operations.

The following lemma in combination with Corollary 2.6

shows that instead of presenting an FP algorithm for each

TCSP with a template preserved by min, it suffices to present

one for CSP(Q; R≥
min
, >) where

R
≥
min
B {(x,y, z) ∈ Q3 | x ≥ y ∨ x ≥ z}.

Lemma 3.2. (Q; R≥
min
, >) is preserved by min and has a pp-

definition of every temporal relation preserved by min.

In the case of CSP(Q; R≥
min
, >), the suitable procedure from

[11] for finding free sets can clearly be implemented in FP.

Corollary 3.3. CSP(Q; R≥
min
, >) is expressible in FP.

The following lemma in combination with Corollary 2.6

shows that instead of presenting an FP algorithm for each

TCSP with a template preserved by mi, it suffices to present

one for CSP(Q; Rmi, Smi,,) where

Rmi B {(x,y, z) ∈ Q3 | x > y ∨ x ≥ z},
Smi B {(x,y, z) ∈ Q3 | x , y ∨ x ≥ z}.

Lemma 3.4. (Q; Rmi, Smi,,) is preserved by mi and has a pp-
definition of every temporal relation preserved by mi.

In the case of (Q; Rmi, Smi,,), the suitable procedure from [11]

for finding free sets can be implemented in FP if it returns

the union of all free sets computed during the main loop

instead of a single free set.

Corollary 3.5. CSP(Q; Rmi, Smi,,) is expressible in FP.

If a TCL B is preserved by ll, then it is also preserved

by lex, but not necessarily by pp. In general, the choiceless

procedure based on Proposition 3.1 is not correct for CSP(B).

We show that there exists a modified version of this proce-

dure, motivated by the approach of repeated contractions

from [12] for TCSPs whose template is preserved by lex,

and this version is correct for CSP(B).

Let A be an instance of CSP(B). We repeatedly simulate

on A the choiceless procedure based on Proposition 3.1 and,

every time a union S of free sets is computed, we contract in

A all variables in every free set within S that is minimal w.r.t.

set inclusion among all existing free sets in the current pro-

jection. This loop terminates when a fixed-point is reached

where A no longer changes in which case we accept.

The following lemma in combination with Corollary 2.6

shows that instead of presenting an FP algorithm for each

TCSP with a template preserved by ll, it suffices to present

one for CSP(Q; Rll, Sll,,) where

Rll B {(x,y, z) ∈ Q3 | x > y ∨ x > z ∨ x = y = z},
Sll B {(x,y, z,w) ∈ Q4 | x , y ∨ z ≥ w}.

Lemma 3.6. (Q; Rll, Sll,,) is preserved by ll and has a pp-
definition of every temporal relation preserved by ll.

In the case of CSP(Q; Rll, Sll,,), we can use the same FP

procedure for finding free sets from [11] that we use for

instances of CSP(Q; Rmi, Smi,,). Clearly, repeated contrac-

tion of minimal free sets can be implemented in FP as well

because minimality is a choiceless condition.

Corollary 3.7. CSP(Q; Rll, Sll,,) is expressible in FP.

4 A TCSP in FPR2 which is not in FP

Let X be the temporal relation as defined in the introduction.

In this section, we show that CSP(Q; X) is expressible in FPR2

(Proposition 4.2) but inexpressible in FPC (Theorem 4.11).

Moreover, the following lemma in combination with Corol-

lary 2.6 shows that instead of presenting an FPR2 algorithm

for each TCSP with a template preserved by mx, it suffices

to present one for CSP(Q; X).

Lemma 4.1. The structure (Q; X) is preserved by mx and has
a pp-definition of every temporal relation preserved by mx.

The polynomial-time algorithms from [11] for CSPs of

TCLs preserved by mx and for CSPs of TCLs preserved by

mi only differ in the way how one determines if a variable

is contained in a free set in the current projection. Thus the

expressibility of CSP(Q;X ) in FPR2 can be shown using the

same approach as in the first part of Section 3 via Proposi-

tion 3.1 if the suitable procedure from [11] for finding free
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sets can be implemented in FPR2. This is possible by encod-

ing systems of Boolean linear equations in FPR2 similarly as

it is done in the case of symmetric reachability in directed

graphs in the paragraph above Corollary III.2. in [20].

Corollary 4.2. CSP(Q; X) is expressible in FPR2.

Interestingly, the inexpressibility of CSP(Q;X ) in FPC can-

not be shown by giving a pp-construction of systems of

Boolean linear equations and utilizing the inexpressibility re-

sult of Atserias, Bulatov, and Dawar [1] (see Corollary 7.14).

For this reason we resort to the standard strategy of show-

ing that CSP(Q; X) has unbounded counting width and then

applying Theorem 2.3 [22]. The counting width of CSP(B)

for a τ -structureB is the function that assigns to each n ∈ N
the minimum value k for which there is a τ -sentence ϕ in

Ck
such that, for every τ -structure A with |A| ≤ n, A |= ϕ iff

A → B. Recall the reflexive and transitive relation⇒k and

the equivalence relation≡Ck fromDefinition 2.2. In our proof

of inexpressibility, we utilize both the existential k-pebble
game which characterizes ⇒k , and the bijective k-pebble
game which characterizes ≡Ck . See [2] for details about the

approach to ⇒k and ≡Ck via model-theoretic games. For

easier understanding we reformulate CSP(Q; X) as a certain
decision problem for systems of linear equations over Z2.

The satisfiability problem for systems of linear equations

Ax = b over a finite Abelian groupGwith atmostk variables
per equation can be formulated as CSP(EG,k ) where EG,k
is the structure over the domain G of G with the relations

{t ∈ G j |
∑

i ∈[j] t[i] = a} for every j ≤ k and a ∈ G [1]. In the

present paper, we denote the instance of CSP(EZ2,k ) that is

derived from a system of Boolean linear equationsAx = b by

IA,b . Recall the decision problem 3-Ord-Xor-Sat defined in

the introduction. Formally, we understand 3-Ord-Xor-Sat

as a proper subset of CSP(EZ2,3). Now we turn our attention

back to the original problem. The structure (Q; X) meets the

sole requirement of being a TCL preserved by mx for applica-

bility of Theorem 42 from [11]. This result provides us with

a polynomial-time algorithm for CSP(Q; X). An inspection

of the algorithm reveals that CSP(Q; X) and 3-Ord-Xor-Sat

are the same problems up to renaming of symbols. We use

the probabilistic construction of 3-multipedes from [6, 30]

as a black box for extracting certain systems of Boolean lin-

ear equations that represent instances of CSP(Q; X). More

specifically, we use the reduction of the isomorphism prob-

lem for 3-multipedes to the satisfiability of a system of linear

equations over Z2 with 3 variables per equation from the

proof of Theorem 23 in [6].

The following concepts were introduced in [30]; wemostly

follow the terminology in [6].

Definition 4.3. A 3-multipede is a finite relational struc-

tureM with the signature {<, E,H }, where <, E are binary

symbols and H is a ternary symbol, such that M satisfies

the following axioms. The domain ofM has a partition into

segments S(M) and feet F (M) such that <M is a linear or-

der on S(M), and EM is the graph of a surjective function

seg : F (M) → S(M) with |seg−1(x)| = 2 for every x ∈

S(M). For every t ∈ HM , either the entries of t are contained
in S(M) and we call t a hyperedge, or they are contained in

F (M) and we call t a positive triple. The relation HM is fully
symmetric, that is, closed under all permutations of entries,

and only contains triples with pairwise distinct entries. For

every positive triple t , the triple (seg(t[1]), seg(t[2]), seg(t[3]))
is a hyperedge. If t ∈ HM is an hyperedge where seg

−1(t[i]) =
{xi ,0, xi ,1} for every i ∈ [3], then we require that exactly 4

elements of the set {(x1,i , x2, j , x3,k ) | i, j,k ∈ {0, 1}} are pos-
itive triples. We also require that, for each pair of triples

(x1,i , x2, j , x3,k ), (x1,i′, x2, j′, x3,k ′) from the set above, we have

(i − i ′) + (j − j ′) + (k − k ′) = 0 mod 2. A 3-multipedeM is:

• odd if for each ∅ ⊊ X ⊆ S(M) there is a hyperedge

t ∈ HM such that |{t[1], t[2], t[3]} ∩ X | is odd,

• k-meager if for each ∅ ⊊ X ⊆ S(M) of size at most 2k
we have |X | > 2 · |HM ∩ X 3 |.

Example 4.4. The 3-multipede M from Figure 1 has seg-

ments S(M) = Z9, feet F (M) = Z9 × Z2, <
M

is the linear

order 0 < · · · < 8, EM = {(t, s) ∈ F (M) × S(M) | t[1] = s},
and HM consists of: all triples s ∈ S(M)3 with s[2] = s[1] +
2 mod 9 and s[3] = s[1]+ 5 mod 9, and all triples (t1, t2, t3) ∈
F (M)3 such that s B (t1[1], t2[1], t3[1]) satisfies the previous
condition and additionally t1[2]+t2[2]+t3[2] = 0 mod 2. Note

that the hyperedges ofM do not overlap on more than one

segment, because the minimal distances between two ele-

ments of an hyperedge are 2, 3, or 4 mod 9. This directly

implies thatM is 2-meager. Using Gaussian elimination, one

can check that the system of linear equations Ax = 0 over
Z2, where A is the incidence matrix of the hyperedges ofM

on the segments ofM, only admits the trivial solution. From

this fact it follows that M is odd. Otherwise, suppose that

there exists a non-emptyX ⊆ S(M)witnessing thatM is not

odd. Then Ax = 0 is satisfied by the non-trivial assignment

that maps x[s] to 1 iff s ∈ X , which yields a contradiction.

The following two statements are crucial for our applica-

tion of 3-multipedes in the context of CSP(Q; X). An auto-

morphism is called trivial if it is an identity map.

Proposition 4.5 ([6], Proposition 17). Odd 3-multipedes have
no non-trivial automorphisms.

For a pairM1,M2 of 3-multipedes we say thatM2 is ob-

tained fromM1 by transposing the feet of a segment s ofM1

([30], p. 12) if the domains and relations of both 3-multipedes

coincide up to the following property: a positive triple t ofM1

is a positive triple ofM2 iff s < {seg(t[1]), seg(t[2]), seg(t[3])}.

Lemma 4.6 ([30], Lemma 4.5). For any k ∈ N>0, letM1,M2

be two 2k-meager 3-multipedes such that one is obtained
from the other by transposing the feet of one segment. Then
M1 ≡Ck

∞ω
M2. The statement holds even if we extend the sig-

nature by means of individual constants for every segment.



LICS ’20, July 8–11, 2020, Saarbrücken, Germany Manuel Bodirsky, Wied Pakusa, and Jakub Rydval

0

1

2

3

4

5

6

7

8

(0, 0)

(1, 0)

(2, 0)(3, 0)

(4, 0)

(5, 0)

(6, 0)

(7, 0)

(8, 0)

(0, 1)

(1, 1)

(2, 1)

(3, 1)

(4, 1)

(5, 1)

(6, 1) (7, 1)

(8, 1)

0,0

1,0

2,0
3,0

4,0

5,0

6,0

7,0

8,0

0,1

1,1

2,1

3,1

4,1

5,1

6,1
7,1

8,1

0

1

2

3

4

5

6

7

8

Figure 1. An odd 2-meager 3-multipede.

Proposition 4.7 ([6], Proposition 18). For every k ∈ N>0,
there exists an odd k-meager 3-multipede.

LetM1,M2 be any two 3-multipedes withM1 = M2, <
M1 =

<M2
, EM1 = EM2

, and HM1 ∩ S(M1)
3 = HM2 ∩ S(M2)

3
. Fix

an arbitrary bijection f : M1 → M2 that preserves <
M1

and

EM1
. Let t1, . . . , tm be an enumeration of HM1 ∩S(M1)

3
and

s1, . . . , sℓ be an enumeration of S(M1). Consider the matrix

A′ ∈ {0, 1}m×ℓ
with A′

[i , j] = 1 iff sj occurs in some entry of

t i , and the tuple b ′
∈ {0, 1}m with b ′

[i] = 0 iff f preserves

positive triples ofM1 at t i . Each isomorphism fX : M1 → M2

can be obtained from f by transposing the images of the feet

at every segment from a particular subset X ⊆ S(M1), i.e.,

fX (x) =

{
f (y) if seg

−1(s) = {x,y} for some s ∈ X ,
f (x) otherwise.

For every X ⊆ S(M1), let tX ∈ {0, 1}ℓ be the tuple defined
by tX [i] B 1 iff si ∈ X . The following lemma is a simple

consequence of the definition of a 3-multipede.

Lemma 4.8 ([6], the proof of Theorem 23). For every X ⊆

S(M1), the mapping fX is an isomorphism fromM1 toM2 iff
tX is a solution to the system A′x = b ′.

Keeping this construction in mind, we can derive the fol-

lowing statement about systems of Boolean linear equations.

Proposition 4.9. For every k ≥ 2 there exist Boolean vectors
b,c , 0 and a Boolean matrix A with 3 non-zero entries per
row such that

1. Ax = 0 only admits the trivial solution,
2. Ax = c has a solution and Ax = b has no solution,
3. IA,b ≡C2k IA,c .

Proof. For a given k ≥ 2, let M1 be an odd 12k-meager 3-

multipede whose existence follows from Proposition 4.7. We

obtain a second 3-multipede M2 from M1 by transposing

the feet of an arbitrary segment s ofM1. Fix any bijection

f : M1 → M2 that preserves <
M1

and EM1
, and let A′x = b ′

be the system of linear equations over Z2 derived fromM1,

M2 and f using the construction described in the paragraph

above Lemma 4.8. By the definition of M2, every isomor-

phismM1 → M2 yields a non-trivial automorphism ofM1.

SinceM1 is odd, it cannot have a non-trivial automorphism

due to Proposition 4.5. HenceM1 andM2 are non-isomorphic.

But then A′x = b ′
cannot have a solution due to Lemma 4.8.

Now consider the situation where M2 was a copy of M1

instead, and we chose f to be the identity map. Then f
would preserve all positive triples ofM1. Thus the system

of linear equations over Z2 obtained from M1, M2 and f
using the identical construction as in the non-isomorphic

case would be precisely A′x = 0, the homogeneous compan-

ion of A′x = b ′
. By an additional application of Lemma 4.8,

A′x = 0 cannot have any non-trivial solution, becauseM1

has no non-trivial automorphism.

Note that we have IA′,1 ⇒2k EZ2,3 because Duplicator

has the trivial winning strategy of placing all pebbles on 1

in the existential 2k-pebble game played on IA′,1 and EZ2,3.

We claim that also IA′,b ′ ⇒2k EZ2,3. In the terminology of

[2] we would say that IA′,b ′ is 2k-locally satisfiable. Without

loss of generality, we may assume that M1,M2 have their

signature expanded by constant symbols for every segment

(see Lemma 4.6). For convenience, we fix an arbitrary linear

order onM1 = M2, and say that x is a left foot and y a right
foot of a segment s with seg

−1(s) = {x,y} if x is less than

y w.r.t. this order. We know that Duplicator has a winning

strategy in the bijective 6k-pebble game played onM1 and

M2. We use it to construct a winning strategy for Duplicator

in the existential 2k-pebble game played on IA′,b ′ and EZ2,3.

Suppose we have a position in the existential 2k-pebble
gamewith pebbles 1, . . . , ℓ placed on some x1, . . . , xℓ ∈ IA′,b ′

andv1, . . . ,vℓ ∈ {0, 1} for ℓ ≤ 2k . If Spoiler chooses a pebble
i > ℓ and places it onto some xi ∈ IA′,b ′ , then we consider

the situation in the bijective 6k-pebble game played onM1

andM2 where Spoiler places, in three succeeding rounds, a

pebble i on the corresponding segment xi of M1, and two

pebbles iℓ, ir on its left and right foot. Since Duplicator has a

winning strategy in this game, she can react by placing the

pebbles i, iℓ, ir on some elements yi ,yiℓ ,yir of the second 3-

multipedeM2. Since her placement corresponds to a partial

isomorphism and the signature contains constant symbols

for every segment, yi must be a segment with the same

number of predecessors as xi with respect to the linear order

on the segments, and yiℓ ,yir must be its feet. Now if yiℓ is
the left and yir the right foot of yi , then Duplicator places vi
on 0 in the existential 2k-pebble game, otherwise on 1. The

case when i ≤ ℓ corresponds to the situation when pebbles

i, iℓ, ir are lifted from bothM1 andM2. Clearly Duplicator
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can maintain this condition, and her pebbling specifies a

partial homomorphism by a local variant of Lemma 4.8.

The following construction originates from [2]. We define

the system Ax = b so that it contains, for each equation

xi1 + xi2 + xi3 = b
′
i of A

′x = b ′
and all a1,a2,a3 ∈ {0, 1}, the

equation xa1i1 +x
a2
i2 +x

a3
i3 = b

′
i +a1 +a2 +a3. Analogously we

obtain Ax = c from A′x = 1, and Ax = z from A′x = 0. As
a direct consequence of Lemma 2 in [2] we have

IA,b ≡C2k IA,z ≡C2k IA,c

while we also have IA,c → EZ2,3 and IA,b ↛ EZ2,3 due

to Lemma 3 in [2]. Note that IA,0 contains a copy of IA′,0
with variables xai for both upper indices a ∈ {0, 1}, and thus

Ax = 0 only admits the trivial solution. □

The following result can be derived from Proposition 4.9

by adding dummy variables based onb and c to the equations
of Ax = 0 and subsequently reducing their length back to 3.

Corollary 4.10. For every k ≥ 2, there exist Boolean matrices
B andC with 3 non-zero entries per row such that

• each non-empty subset F of the equations ofCx = 0 has
a non-trivial solution with respect to the variables that
occur in F ,

• Bx = 0 has only the trivial solution,
• IB,0 ≡Ck IC ,0.

Theorem 4.11. CSP(Q; X) is inexpressible in FPC.

Proof. We have 3-Ord-Xor-Sat = CSP(Q; X) up to renam-

ing of symbols by inspection of the original algorithm for

TCSPs with a template preserved by mx from [11]. It follows

from Corollary 4.10 and Theorem 2.3 that 3-Ord-Xor-Sat is

inexpressible in FPC, which completes the proof. □

5 Classification of TCSPs in FP

In this section, we classify CSPs of TCLs with respect to

expressibility in fixed-point logic. We start with the case of

a TCL B that is not preserved by any operation mentioned

in Theorem 2.10. Note that the NP-completeness of CSP(B)

is not sufficient for obtaining inexpressibility in FP. What is

sufficient is the fact thatB pp-constructs all finite structures.

Lemma5.1. LetB be a relational structure. IfB pp-constructs
all finite structures, then CSP(B) is inexpressible in FPC.

Proof. In particular,B pp-construct the structureEZ2,3 whose

CSP is inexpressible in FPC by Theorem 10 in [1]. Thus

CSP(B) is inexpressible in FPC by Corollary 2.6. □

We show in Theorem 5.2 that those TCLs preserved by

mx for which we know that their CSP is expressible in FP

by the results in Section 3 are precisely the ones unable to

pp-define the relation X which we have studied in Section 4.

Theorem 5.2. Let B be a TCL preserved by mx. Then either
B admits a pp-definition of X, or one of the following is true:

1. B is preserved by a constant operation,

2. B is preserved by min.

We are now ready for our first classification result.

Theorem 5.3. Let B be a TCL. The following are equivalent:
1. CSP(B) is expressible in FP.
2. CSP(B) is expressible in FPC.
3. B does not pp-construct all finite structures and B does

not pp-construct (Q; X).
4. B is preserved by min, mi, ll, the dual of one of these

operations, or by a constant operation.

Proof. Let B be a TCL.

(1)⇒(2): Trivial because FP is a fragment of FPC.

(2)⇒(3): Lemma 5.1 implies that B does no pp-construct

all finite structures; Theorem 4.11 and Corollary 2.6 show

that B does not pp-construct (Q; X).
(3)⇒(4): Since B does not pp-construct all finite struc-

tures, by Theorem 2.10, B is preserved by min, mi, mx, ll,

the dual of one of these operations, or by a constant oper-

ation. If B is preserved by mx but neither by min nor by a

constant operation, then B pp-defines X by Theorem 5.2, a

contradiction to (3). IfB is preserved by dualmx but neither

by max nor by a constant operation, then B pp-defines −X
by the dual version of Theorem 5.2. Since (Q;X ) and (Q;−X )

are homomorphically equivalent, we get a contradiction to

(3) in this case as well. Thus (4) must hold for B.

(4)⇒(1): If B has a constant polymorphism, then CSP(B)

is trivial and thus expressible in FP. If B is preserved by

min, mi, or ll, then every relation of B is pp-definable in

(Q; R≥
min
, >) by Lemma 3.2, or in (Q; Rmi, Smi,,) by Lemma 3.4,

or in (Q; Rll, Sll,,) by Lemma 3.6. Thus CSP(B) is express-

ible in FP by Corollary 3.3, Corollary 3.5, or Corollary 3.7

combinedwith Corollary 2.6. Each of the previous statements

can be dualized to obtain expressibility of CSP(B) in FP if B

is preserved by max, dualmi, or dual ll. □

The following corollary can be derived from Theorem 5.3,

Corollary 4.2, Lemma 4.1, and the fact that CSP(EZ3,3) is

inexpressible in FPR2 because 2, 3 are distinct primes [28].

Corollary 5.4. The CSP of a TCL B is expressible in FPR2 iff
B does not pp-construct all finite structures.

6 Classification of TCSPs in Datalog

In this section, we classify CSPs of TCLs with respect to

expressibility in Datalog in several steps.

A formula over the signature {<} is Ord-Horn if it is a

conjunction of clauses of the form (x1 , y1) ∨ · · · ∨ (xm ,
ym) ∨ (x ≤ y) where the last disjunct is optional (see [7]).
Nebel and Bürckert [40] showed that testing satisfiability

of Ord-Horn formulas can be done in polynomial time. It

is easy to see that their algorithm can be formulated as a

Datalog procedure. We show in Proposition 6.1 that Ord-

Horn definability of the relations of a TCL preserved by one

of the operations min, mi, mx, or ll can be characterized
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in terms of admitting certain polymorphisms. Interestingly,

there is no such characterization in terms of identities for

polymorphism clones (see Proposition 7.3). Proposition 6.1

is proved using the syntactic normal form for temporal re-

lations preserved by pp from [8] and the syntactic normal

form for temporal relations preserved by ll from [7].

Proposition 6.1. A temporal relation preserved by min, mi,
mx, or ll is Ord-Horn definable iff it is preserved by every
binary injective operation on Q that preserves ≤.

Let Rmin be the temporal relation as defined in the intro-

duction. Recall that CSP(Q; Rmin) is inexpressible in Datalog

[12]. This time, the reason for inexpressibility is not un-

bounded counting width, but the combination of the two

facts that CSP(Q; Rmin) admits unsatisfiable instances of ar-

bitrarily high girth, and that all proper projections of Rmin

are trivial. We show in Theorem 6.2 that the inability of a

TCL preserved by one of the operations min, mi, mx, or ll

to pp-define Rmin can be characterized in terms of being pre-

served by a constant operation, or by the operations from

Proposition 6.1 which witness Ord-Horn definability.

Theorem 6.2. Let B be a TCL preserved by min, mi, mx, or
ll. Then either B admits a pp-definition of the relation Rmin,
or one of the following is true:

1. B is preserved by a constant operation, or
2. B is preserved by every binary injective operation on Q

that preserves ≤.

We are ready for our second classification result; its proof

is a straightforward combination of Corollary 2.6, Proposi-

tion 6.1, Theorem 6.2, and the results from previous sections.

Theorem 6.3. Let B be a TCL. The following are equivalent:
1. CSP(B) is expressible in Datalog.
2. B does not pp-construct all finite structures and B does

not pp-construct (Q, Rmin).
3. Every relation of B is Ord-Horn definable or B has a

constant polymorphism.

7 Algebraic conditions for temporal CSPs

In this section, we consider several candidates for general

algebraic criteria for expressibility of CSPs in FP and Datalog

stemming from the well-developed theory of finite-domain

CSPs. Our results imply that none of them can be used in

the setting of ω-categorical CSPs. We also present a new

simple algebraic condition which characterises expressibility

of both finite-domain and temporal CSPs in FP.

h1 conditions. We call an at least binary operation f
weak near-unanimity (WNU) if it satisfies f (y, x, . . . , x) ≈
· · · ≈ f (x, . . . , x,y). The requirement for existence of such

an operation is an example of a height one condition; height
one (h1) conditions are given by sets of identities of the form

f1(x
1

1
, . . . , x1n1

) ≈ · · · ≈ fk (x
1

k , . . . , x
k
nk ) and we have already

encountered them in Theorem 1.1.

Failures of known h1 conditions. Despite their success
in the setting of finite-domain CSPs, finite h1 conditions such

as item (5) in Theorem 1.1 are insufficient for classification

purposes in the context of ω-categorical CSPs.

Proposition 7.1. Let L be any logic at least as expressive as
the existential positive fragment of FO. There is no finite h1
condition capturing the expressibility of the CSPs of reducts of
finitely bounded homogeneous structures in L.

Proposition 7.1 is a consequence of the proof of Theo-

rem 1.3 in [14]. Both statements rely on a result from [18]

which states that, for every finite familyF of finite connected

structures with a finite signature τ , there exists a τ -reduct
Uh(F ) of a finitely bounded homogeneous structure such

that Uh(F ) embeds precisely those finite τ -structures which
do not contain a homomorphic image of any member of F

(also see, e.g., the presentation in [33] and [14]).

Proof of Proposition 7.1. Suppose, on the contrary, that there

exists such a condition E. By the proof of Theorem 1.3 in

[14], there exists a finite family F of finite connected struc-

tures with a finite signature τ such that Pol(Uh(F )) violates

E. By a standard result from database theory, A homomor-

phically maps to B iff the canonical conjunctive query QA
is true in B [17]; QA is the pp-sentence with existentially

quantified variables xa for every a ∈ A, and a conjunction of

literals R(xa1, . . . , xan ) for every (a1, . . . ,an) ∈ RA . Clearly
the existential positive sentence ϕUh (F) B

∨
A∈F QA defines

the complement of CSP(Uh(F )). But then CSP(Uh(F )) is

expressible in L, a contradiction. □

The satisfiability of h1 identities in polymorphism clones

is preserved under h1 clone homomorphisms, and the sat-

isfiability of arbitrary identities in polymorphism clones is

preserved under clone homomorphisms [5]. We use the latter

to show that, for Datalog, Proposition 7.1 can be strength-

ened to sets of arbitrary identities, see Theorem 7.2. We

hereby give a negative answer to an open question from

[14] concerning the existence of a fixed set of identities that

would capture Datalog expressibility for ω-categorical CSPs.
Recall the relation Sll defined in Lemma 3.6.

Theorem 7.2. There is no set of identities for polymorphism
clones that would capture the expressibility of the CSPs of
reducts of finitely bounded homogeneous structures inDatalog.

Proof. By Proposition 7.3, every set of identities satisfiable

in Pol(Q;,, Sll) is satisfiable in Pol(Q; Rmin). We also have

that CSP(Q;,, Sll) is expressible in Datalog by Theorem 6.3

because , and Sll are Ord-Horn definable, and CSP(Q; Rmin)
is inexpressible in Datalog by Theorem 5.2 in [12]. □

We say that an operation f : Bn → B depends on the i-th
argument if there exist b1, . . . ,bn,b ∈ B with bi , b such

that f (b1, . . . ,bn) , f (b1, . . . ,bi−1,b,bi+1, . . . ,bn).
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Proposition 7.3. There exists a uniformly continuous clone
homomorphism ξ : Pol(Q;,, Sll) → Pol(Q; Rmin).

Proof. For an n-ary f ∈ Pol(Q;,, Sll), let {i1, . . . , im} ⊆ [n]
be the set of all indices i ∈ [n] such that f (x1, . . . , xn) de-
pends on the i-th argument. Since (Q;,, Sll) has no con-

stant polymorphism, we havem > 0. We define the essen-
tial part of f as the map f ess : Qm → Q, (x1, . . . , xm) 7→

f (xµf (1), . . . , xµf (n)) where µf : [n] → [m] is any map that

satisfies µf (iℓ) = ℓ for each ℓ ∈ [m]. By Proposition 6.1.4

in [7], f ess is injective because the relation {t ∈ Q4 | t[1] =
t[2] ⇒ t[3] = t[4]} is pp-definable in (Q;,, Sll). We define

ξ : Pol(Q;,, Sll) → Pol(Q; Rmin) so that it sends an n-ary
operation f ∈ Pol(Q;,, Sll) to the map (x1, . . . , xn) 7→

min{xµf (1), . . . , xµf (n)}. Clearly ξ preserves arities and pro-

jections. We claim that ξ is a clone homomorphism, that is,

ξ (f (д1, . . . ,дn)) = ξ (f )(ξ (д1), . . . , ξ (дn)) holds for all n-ary
f andm-ary д1, . . . ,дn from Pol(Q;,, Sll). By the injectivity

of the essential parts, we have

f (д1, . . . ,дn)
ess = f

(
дessµf (1), . . . ,д

ess
µf (n)

)
.

Now the claim that ξ is a clone homomorphism follows from

the simple fact that

min{x1,1, . . . , xℓ,kℓ } = min{min{xi ,1, . . . , xi ,ki } | i ∈ [ℓ]}

holds for any ℓ,k1, . . . ,kℓ ≥ 1. Finally, ξ defined this way is

trivially uniformly continuous by choosing A′ B B′
. □

It is worth mentioning that there is no uniformly continu-

ous clone homomorphism ξ : Pol(Q;,, Sll) → Pol(Q; Rmin)

such that the invertible unary operations of ξ (Pol(Q;,, Sll))
act with finitelymany orbits onQ. Otherwise, (Q; Rmin) could
be pp-constructed from (Q;,, Sll) by Corollary 6.10 in [5]

which would, through Corollary 2.6, yield a contradiction to

the inexpressibility of CSP(Q; Rmin) in Datalog.

The main reason behind the failure of most equational

conditions coming from finite-domain CSPs in the setting of

TCSPs is the existence of TCLs with a tractable CSP whose

polymorphisms have very small kernels (sometimes even

injective). Instead of identifying output values of a single

operation, one needs to identify orbits of tuples obtained

by a row-wise application of several different operations to

matrix-like schemes of variables. Such conditions were pre-

viously considered in the literature, e.g., the (m + n)-terms
introduced in [41]. A condition E given by a set of identities

is called idempotent if, for each operation symbol f appear-

ing in the condition, f (x, . . . , x) ≈ x is a consequence of

E, and trivial if E can be satisfied by projections. By Theo-

rem 1.7 in [41], the existence of (3 + n)-terms for some n is

an non-trivial idempotent condition that characterizes pre-

cisely those polymorphism clones over arbitrary sets whose

variety is congruence meet-semidistributive, short SD(∧). All
we need to know about SD(∧) is that, in the finite-domain

setting, it is in 1-1 correspondence to the expressibility of

CSPs in Datalog / FP / FPC, see, e.g., Theorem 1.7 in [42]. This

correspondence fails for temporal CSPs, see Proposition 7.4.

Proposition 7.4. The polymorphism clone of (Q;,, Sll) does
not satisfy any non-trivial idempotent condition and hence its
variety is not SD(∧), but CSP(Q,,, Sll) is expressible in FP.

Simply dropping idempotence does not bring us any fur-

ther—Proposition 7.5 shows that, when working with TCSPs,

we also lose the correspondence of expressibility of CSPs in

FP to satisfiability of an arbitrary equational condition that

is unsatisfiable by affine combinations over any field [42].

Proposition 7.5. The polymorphism clone of (Q; X) contains
operations witnessing the non-idempotent part of (3+3)-terms.

New h1 conditions. The expressibility of temporal and

finite-domain CSPs in FP / FPC can still be characterized by

a finite non-idempotent h1 condition (Theorem 7.8) which

is implied by the 3-4 WNU equation and is closely related to

the h1 conditions studied in [3, 24].

Definition 7.6 (Dissected WNUs). Let A be a finite struc-

ture with a single relation RA of arity k . For every t ∈ RA

we introduce an k-ary function symbol дt . We define the

h1 condition EA so that it contains, for each pair t, t ′ ∈

RA with t[i] = t ′[j], the equation дt (x, . . . x,y, x . . . x) ≈
дt ′(x, . . . x,y, x . . . x) where y appears in the i-th argument

of дt (· · · ) and in the j-th argument of дt ′(· · · ). We write

Ek ,n instead of EA if the domain A of A is [n] and RA = {t ∈

[n]k | t[1] < · · · < t[k]}. The condition ˜Ek ,n is defined as the

extension of Ek ,n by the equations дt (x, . . . x,y, x . . . x) ≈
f (x, . . . x,y, x . . . x) where y appears in the i-th argument of

дt (· · · ) and in the t[i]-th argument of f (· · · ).

We first present a general fact about the conditions EA
and then we restrict our attention to the families (Ek ,n) and

( ˜Ek ,n). Recall the structure ({0, 1}; 1INk) defined in Section 2.

Lemma 7.7. EA is trivial iff A → ({0, 1}; 1INk).

The condition
˜Ek ,n first appeared in Lemma 4.3 in [3]

for n = 2k − 1 in a slightly extended form consisting of

several intertwined copies of
˜Ek ,2k−1. Later in [24], the n-ary

operation in
˜Ek ,n was replaced by a set of binary operations.

We propose to consider an even simpler version obtained

by dropping the n-ary operation symbol completely while

retaining the implied equalities for the remaining operation

symbols. This leads to the identities Ek ,n . The reason is

that, although
˜Ek ,n and Ek ,n are not equivalent as finite h1

conditions as we demonstrate below, the satisfiability of one

of these conditions for all but finitely many n > k > 1 yields

two criteria which are equivalent within the scope of the

present paper. Note that Ek ,n is implied by the existence of a

single k-ary WNU operation, whereas
˜Ek ,n is implied by the

existence of two WNU operations f and д with arities k and

n, respectively, which satisfy f (y, x, . . . , x) ≈ д(y, x, . . . , x).
Also note that Ek ,n implies Ek ,k+1 for all n > k > 1. Using
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Lemma 7.7, it is easy to see that Ek ,k+1 is non-trivial for every

k ≥ 2. We can prove the following result for finite-domain

and temporal CSPs, where
˜E3,4 can be replaced with

˜Ek ,k+1
for any odd k > 1.

Theorem 7.8. Let B be a finite structure or a TCL. Then
CSP(B) is expressible in FP / FPC iff Pol(B) satisfies ˜E3,4.

It follows from Proposition 7.1 that Theorem 7.8 cannot

hold for the CSPs of reducts of finitely bounded homoge-

neous structures in general. However, the polymorphism

clone of each of the structures Uh(F ) used in the proof

of Proposition 7.1 can only violate
˜Ek ,n for finitely many

n > k > 1. Also, requiring the simpler condition E3,4 in

Theorem 7.8 instead of
˜E3,4 still captures the expressibility

of TCSPs in FP. This is not the case for finite-domain CSPs

because E3,4 is implied by the existence of a ternary WNU

operation. However, Theorem 7.8 can still be reformulated

using the simpler conditions if we instead require the satifia-

bility of Ek ,k+1 for all but finitely many arities, which draws

a parallel to Theorem 1.1. For the proof of this more general

result, Theorem 7.11, which also covers the structuresUh(F ),

we need the following definition.

Definition 7.9. Let k ∈ N≥2. We denote the k-ary mini-

mum on Q by mink . The operation mxk : Q
k → Q is de-

fined inductively as follows. In the base case k = 2, we set

mx2(t) B mx(t). For k > 2, we set

mxk (t) B mx

(
mxk−1(t[1], . . . , t[k − 1]),mxk−1(t[2], . . . , t[k])

)
.

The following definitions specify k-ary operations on Q:

lexk (t) Blex

(
t[1], lex

(
t[2], . . . lex(t[k − 1], t[k]) . . .

) )
,

medk (t) Bmax

{
min{t[i] | i ∈ I }

�� I ∈ ( [k ]
k−1

)}
,

mik (t) Blexk+2
(
mink (t),medk (−χ (t)),−χ (t)

)
,

llk (t) Blexk+2
(
mink (t),medk (t), t

)
.

Proposition 7.10. Let B be a TCL that is preserved by min

/ mi / mx / ll. Then B is preserved by mink / mik / mxk / llk
for all k ≥ 2.

Theorem 7.11. Let B be a TCL, a finite structure, or the
structure Uh(F ) for some F . Then CSP(B) is expressible in FP
/ FPC iff Pol(B) satisfies Ek ,k+1 for all but finitely many k .

Proof. In the context of Ek ,k+1, we write дi instead of дt for
t that omits i as an entry.

ForB a TCL, we proceed by a case distinction according to

the proof of Theorem 5.3. Suppose thatB is a TCL that is nei-

ther preserved by min, mi, mx, ll, the dual of one of these op-

erations, nor a constant operation. Then B pp-constructs all

finite structures by Theorem 2.10 and in particular the struc-

ture ({0, 1}; 1IN3). By Theorem 1.8 in [5], there exists a uni-

formly continuous h1 clone homomorphism from Pol(B) to

Pol({0, 1}; 1IN3), the projection clone. By Lemma 7.7, Ek ,k+1
is non-trivial for every k . Thus Pol(B) cannot satisfy Ek ,k+1
due to Theorem 1.9 in [3].

Next, we distinguish the cases whereB is a TCL preserved

by one of the operations listed above. 1) If B is preserved

by a constant operation, then Ek ,k+1 is witnessed by a set of

k-ary constant operations for every k . 2) If B is preserved

by min, then Ek ,k+1 is witnessed by a set of k-ary minimum

operations for everyk ≥ 2. 3) IfB has mx as a polymorphism,

then, by Theorem 5.2, either B is preserved by min or a

constant operation, which are cases that we have already

treated, or otherwiseB admits a pp-definition of X. We claim

that Pol(Q; X) does not satisfy Ek ,k+1 for any odd k > 1.

Suppose, on the contrary, that Pol(Q; X) satisfies Ek ,k+1 for

some odd k > 1. By Theorem 6 in [8], the temporal relation

Rk
mx
B {t ∈ Qk |

∑k
ℓ=1 χ (t)[ℓ] = 0 mod 2} is preserved by

mx. By Lemma 4.1, Rk
mx

is pp-definable in (Q; X). Thus, by

Proposition 2.1, Pol(Q;Rk
mx
) satisfies Ek ,k+1 as well. Consider

the inputs x = 0 and y = 1. Since the columns of the k × k
unit matrix Uk are contained in Rk

mx
, for every i ∈ [k + 1],

the application of дi to the rows of Uk produces a tuple t i
that is contained in Rk

mx
. By the definition of Ek ,k+1, there

exists a tuple t ∈ Qk+1 such that pr[k+1]\{i }(t) = t i for every

i ∈ [k + 1]. By the definition of Rk
mx
, for every i ∈ [k + 1], an

even number of entries in pr[k+1]\{i }(t)must be minimal. If t
exists, then the homogeneous systemAx = 0 ofk+1 Boolean
linear equations of the form

∑
j ∈[k+1]\{i } x j = 0 mod 2 has a

non-trivial solution because some entry in t must be minimal.

But Ax = 0 only has the trivial solution for odd k > 1,

which completes the proof of our claim. 4) If B has mi as a

polymorphism, then we proceed similarly as in the proof of

Proposition 4.10 in [3]. For every k ≥ 3, we set
˜f B mik+1

and д̃i := mik for every i ∈ [k +1]. By homogeneity of (Q;<),
for every finite S ⊆ Q, there exists α ∈ Aut(Q;<) such that

α◦д̃1(y, x, . . . , x) = ˜f (x,y, x, . . . , x), . . . ,α◦д̃1(x, . . . , x,y) =
˜f (x, x, . . . , x,y) for all x,y ∈ S . An analogous statement

holds for д̃i with i > 1 where we appropriately shift the

first arguments on the right hand side containing only the

variable x to the i-th position. Then Lemma 4.4 in [3] yields

functions д1, . . . ,дk+1 (and an auxiliary function f ) which
witness Ek ,k+1 for Pol(B). 5) IfB has ll as a polymorphism,

then we repeat the strategy above starting with
˜f B llk+1

and д̃i B llk for every i ∈ [k + 1]. Each of the statements

2-5) can be dualized in order to obtain witnesses for Ek ,k+1
for k ≥ 3 in the cases whereB is preserved by max, dualmi,
dual ll, and show that Pol(B) does not satisfy Ek ,k+1 for

odd k > 1 if it admits a pp-definition of −X.

To resolve the case where B is a finite structure, we show

that Ek ,k+1 can be satisfied by a set of operations given

by affine combinations over Zn iff gcd(k,n) = 1. Then the

claim follows from previously known results [1, 4, 35, 39].

If gcd(k,n) = 1, then there exists λ ∈ Zn such that kλ =
1 mod n. Then Ek ,k+1 is witnessed by a set of k-ary WNU

operations д1, . . . ,дk+1 given by the affine combinations

дj (x1, . . . , xk ) B
∑k

i=1 λxi . Conversely, suppose that Ek ,k+1
is witnessed by some operations д1, . . . ,дk+1 given by some
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affine combinations дj (x1, . . . , xk ) B
∑k

i=1 λj ,ixi , that is,∑k
i=1 λj ,i = 1 mod n for every j ∈ [k + 1]. If we apply

дj to the rows of the k × k unit matrix Uk for every j ∈

[k + 1], then Ek ,k+1 implies that there exists a particular

partition {F1, . . . , Fk+1} of [k + 1] × [k] such that the value

of λj ,i is constant when (j, i) ranges over one of the sets Fℓ ,
and, for every j ∈ [k + 1], the pairs (j, 1), . . . , (j,k) are con-
tained in

⋃
ℓ∈[k+1]\{j } Fℓ . Let λℓ be any fixed representative

of the coefficients λj ,i for (j, i) ∈ Fℓ . Since д1 is given by

an affine combination, one of the coefficients λ1,1, . . . , λ1,k
is non-zero, say λ1,1. W.l.o.g., (1, 1) ∈ Fk+1. Then we have

k+1 =
∑k+1

j=1
∑k

i=1 λj ,i =
∑k+1

ℓ=1 kλℓ = kλ1,1+k(
∑k

i=1 λk+1,i ) =
kλ1,1 + k mod n. Thus kλ1,1 = 1 mod n. But this can only be

the case if gcd(k,n) = 1.

If B is one of the structures Uh(F ), then CSP(Uh(F ))

is expressible in FP by the proof of Proposition 7.1, and

Pol(Uh(F )) satisfies Ek ,k+1 for all but finitely many arities

because it contains WNU operations for all but finitely many

arities by Lemma 5.4 in [14]. □

Pseudo h1 conditions. In the context of infinite-domain

ω-categorical CSPs, most classification results are formulated

using pseudo h1 conditions [3] which extend h1 conditions

by outer unary operations: e1 ◦ f1(x
1

1
, . . . , x1n1

) ≈ · · · ≈ ek ◦

fk (x
1

k , . . . , x
k
nk ). For instance, the following generalization

of a WNU operation was used in [7] to give an alternative

classification of the computational complexity of TCSPs. An

at least binary operation f ∈ Pol(B) is called pseudo weak
near-unanimity (PWNU) if there exist e1, . . . , en ∈ End(B)

such that e1 ◦ f (x, . . . , x,y) ≈ · · · ≈ en ◦ f (y, x, . . . , x).

Theorem 7.12 ([7]). Let B be a TCL. Then either B has a
PWNU polymorphism and CSP(B) is in P, or B pp-constructs
all finite structures and CSP(B) is NP-complete.

Failures of known pseudo h1 conditions. It is natural
to ask whether pseudo h1 conditions can be used to formu-

late a generalization of the 3-4 equation that would capture

the expressibility in FP for the CSPs of reducts of finitely

bounded homogeneous structures. One such generalization

was considered in [13]. Proposition 7.13 shows that the crite-

rion provided by Theorem 8 in [13] is insufficient in general.

Proposition 7.13. There exist PWNU polymorphisms f ,д of
(Q; X) that satisfy д(x, x,y) ≈ f (x, x, x,y).

Proposition 7.13 has another important consequence, namely

Corollary 7.14. The present proof of Corollary 7.14 is by an

interesting application from [3] of the fact that the automor-

phism group of any ordered homogeneous Ramsey structure
[15] is extremely amenable [34]. Consider the structure EG,3

defined in Section 4 for every finite Abelian group G.

Corollary 7.14. The structure (Q; X) does not pp-construct
EG,3 for any finite non-trivial Abelian group G.

Proof. Suppose, on the contrary, that this is the case. By

Theorem 1.8 in [5], there exists a uniformly continuous h1

clone homomorphism ξ : Pol(Q; X) → Pol(EG,3) that pre-

serves all h1 conditions which hold in Pol(Q; X). Because
(Q;<) is an ordered homogeneous Ramsey structure and

EG,3 is finite, by the second proof of Theorem 1.9 in [3],

there exists a uniformly continuous h1 clone homomorphism

ξ ′ : Pol(Q; X) → Pol(EG,3) that preserves all pseudo h1 con-

ditions with outer embeddings which hold in Pol(Q; X) for at
most 4-ary operations. Since every endomorphism of (Q; X)
is an embedding, the 3-4 equation for PWNUs from Proposi-

tion 7.13 is such a condition. Thus it must also be satisfied in

Pol(EG,3). But the only endomorphism ofEG,3 is the identity,

which means that Pol(EG,3) would have to satisfy the 3-4

equation forWNUs, which cannot be the case by Theorem 1.1

combined with Theorem 10 in [1]. □

Another possible criterion which also turns out to be in-

sufficient is the existence of PWNU polymorphism for all

but finitely many arities, see Proposition 7.15

Proposition 7.15. For every k ≥ 3, mink , mxk , mik , and llk
are PWNU operations.

New pseudo h1 conditions. We present a new candidate

for an algebraic condition given by pseudo h1 identities that

could capture the expressibility in FP for the CSPs of reducts

of finitely bounded homogeneous structures. Let E ′
k ,k+1 be

the pseudo h1 condition obtained from Ek ,k+1 by replacing

each дt in Ek ,k+1 with et ◦д where et is unary and д is k-ary.
For instance, E ′

3,4 is the following condition:

e2 ◦ д(y, x, x) ≈ e3 ◦ д(y, x, x) ≈ e4 ◦ д(y, x, x),
e1 ◦ д(y, x, x) ≈ e3 ◦ д(x,y, x) ≈ e4 ◦ д(x,y, x),
e1 ◦ д(x,y, x) ≈ e2 ◦ д(x,y, x) ≈ e4 ◦ д(x, x,y),
e1 ◦ д(x, x,y) ≈ e2 ◦ д(x, x,y) ≈ e3 ◦ д(x, x,y).

Clearly E ′
k ,k+1 is implied by Ek ,k+1, and also by the existence

of a k-ary WNU operation. It follows from the proof of The-

orem 7.11 that the statement of the theorem remains true if

we replace Ek ,k+1 with E ′
k ,k+1. Note that, although E ′

k ,k+1
contains only a single k-ary operation symbol for k ≥ 2, it

is in general not implied by the existence of a k-ary PWNU

operation by Theorem 7.11 combined with Proposition 7.15.

8 Open questions

Question 1. CanCSP(A) forA a reduct of a finitely bounded

homogeneous structure be expressed in FP iff Pol(A) satisfies

Ek ,k+1 or E
′
k ,k+1 for all but finitely many k > 1?

Question 2. Does the satisfiability of Ek ,k+1 for all but

finitely many k > 1 imply the satisfiability of
˜Ek ,n for all but

finitely many n > k > 1 in polymorphism clones of reducts

of finitely bounded homogeneous structures?

Question 3. Is CSP(Q; X) expressible in choiceless polyno-
mial time (CPT) with (or without) counting [6]?

Question 4. Do FPR or CPT+C capture PTime for CSPs

of reducts of finitely bounded homogeneous structures?

Question 5. If a CSP is in FPC, is it is also in FP?
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