
Logical Methods in Computer Science
Volume 15, Issue 1, 2019, pp. 4:1–4:55
https://lmcs.episciences.org/

Submitted Feb. 27, 2018
Published Jun. 14, 2022

A FINITE-MODEL-THEORETIC VIEW

ON PROPOSITIONAL PROOF COMPLEXITY

ERICH GRÄDEL a, MARTIN GROHE a, BENEDIKT PAGO a, AND WIED PAKUSA b

a RWTH Aachen University, Germany
e-mail address: graedel@logic.rwth-aachen.de

e-mail address: grohe@informatik.rwth-aachen.de

e-mail address: benedikt.pago@rwth-aachen.de

b University of Oxford, England
e-mail address: pakusa@logic.rwth-aachen.de

Abstract. We establish new, and surprisingly tight, connections between propositional
proof complexity and finite model theory. Specifically, we show that the power of several
propositional proof systems, such as Horn resolution, bounded-width resolution, and the
polynomial calculus of bounded degree, can be characterised in a precise sense by variants
of fixed-point logics that are of fundamental importance in descriptive complexity theory.
Our main results are that Horn resolution has the same expressive power as least fixed-point
logic, that bounded-width resolution captures existential least fixed-point logic, and that the
monomial calculus with bounded degree over the rationals solves precisely the problems
definable in fixed-point logic with counting. We also study the bounded-degree polynomial
calculus. Over the rationals, it captures fixed-point logic with counting if we restrict the
bit-complexity of the coefficients. For unrestricted coefficients, we can only say that the
bounded-degree polynomial calculus is at most as powerful as bounded variable infinitary
counting logic, but a precise logical characterisation of its power remains an open problem.
These connections between logics and proof systems allow us to establish finite-model-
theoretic tools for proving lower bounds for the polynomial calculus over the rationals and
also over finite fields.

This is a corrected version of the paper (https://arxiv.org/pdf/1802.09377.pdf) published
originally on January 23, 2019.

1. Introduction

The question whether there exists an efficient proof system by means of which the validity of
arbitrary propositional formulas can be verified via proofs of polynomial size is equivalent to
the closure of NP under complementation. Since Cook and Reckhow [15] made the notion

Key words and phrases: Propositional proof systems, fixed-point logics, resolution, polynomial calculus,
generalised quantifiers.
∗This article is an extended version of the conference paper [27].

The fourth author was supported by a DFG grant (PA 2962/1-1).

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-15(1:4)2019
© E. Grädel, M. Grohe, B. Pago, and W. Pakusa
CC© Creative Commons

ar
X

iv
:1

80
2.

09
37

7v
5

 [
cs

.L
O

]
 1

3
Ju

n
20

22

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

4:2 E. Grädel, M. Grohe, B. Pago, and W. Pakusa Vol. 15:1

of an efficient propositional proof system precise, a huge body of research on the power
of various propositional proof system has been established. In particular, we now have
super-polynomial lower bounds on the proof complexity for quite strong proof systems, see
[9, 41] for surveys on propositional proof complexity.

In this paper we study polynomial-time variants of propositional proof systems, which
admit efficient proof search, resulting in proofs of polynomial size, such as restricted variants
of resolution and the polynomial calculus. To be precise, one of these variants, the bounded-
degree polynomial calculus over the rationals, is not known to admit polynomial-time proof
search because the proofs may involve very large coefficients. Thankfully, as it turns out,
this issue does not prevent a meaningful connection to finite model theory.

Recall that the resolution proof system Res takes as input a propositional formula ϕ in
conjunctive normal form (CNF), and it refutes the satisfiability of ϕ if there is a derivation
of the empty clause from ϕ. It is well-known that shortest resolution proofs can be of
exponential size, so in general, we provably cannot search for resolution proofs in polynomial
time. However, there are interesting restrictions of Res, such as Horn-Res (resolution
restricted to Horn clauses) and bounded-width resolution k-Res (resolution restricted to
clauses of size ≤ k) that do admit efficient proof search, that is the existence of refutations
can be verified in polynomial time. Of course, unless P = NP, any proof system that admits
efficient proof search is necessarily incomplete for full propositional logic. Nevertheless we
can still prove interesting statements in such systems, and usually have completeness for
relevant fragments of propositional logic, such as Horn-logic or 2-CNF. We can now try to
solve algorithmic problems by reducing them to provability (or refutability) in some specific
polynomial-time proof system, which, if it works successfully for all inputs, would give us a
polynomial-time algorithm for the problem. Our goal is to understand how powerful this
approach can be, depending on the specific proof system that we use.

Let us illustrate this by two concrete problems. First we consider graph isomorphism,
a problem which is not known to be solvable in polynomial time although there is strong
evidence that it is not NP-complete. Given two graphs G = (V,E) and H = (W,F) we
ask whether there is a bijection π : V →W such that π(E) = F . Of course, this can easily
be encoded as the satisfiability problem of a propositional CNF-formula. First, for each
pair of vertices v ∈ V and w ∈W we introduce a variable Xvw with the intended meaning
that Xvw = 1 if π(v) = w. We add clauses

∨
w∈W Xvw for every v ∈ V and

∨
v∈V Xvw for

every w ∈ W to ensure that every v ∈ V has an image and every w ∈ W has a preimage.
Additionally we add for all v1, v2 ∈ V and w1, w2 ∈ W a clause ¬(Xv1w1 ∧Xv2w2) in case
that {v1 7→ w1, v2 7→ w2} is not a partial isomorphism. The resulting CNF-formula, denoted
by Iso(G,H), is satisfiable if, and only if, the two graphs G and H are isomorphic. Following
our reasoning from above, we can now use an efficient variant of resolution, or of a stronger
proof system, and try to refute the satisfiability of the formula Iso(G,H). If this is possible,
then G and H are not isomorphic. Unfortunately, if we do not find a proof, then we are
stuck, because it might still be the case that G and H are not isomorphic, but our proof
system is just not strong enough to show this. Hence, we get an efficient, sound, but not
necessarily complete graph isomorphism test. The question of how successful this approach
is when based on resolution was studied by Toran in [42]. Unfortunately, he proved that
shortest resolution proofs for graph non-isomorphism can be of exponential size (even for
graphs with colour class size four). More recently, Grohe and Berkholz showed that also
in the stronger system polynomial calculus (PC) one cannot obtain small proofs for graph
non-isomorphism [10, 11] in the general case.

Vol. 15:1 A FINITE-MODEL-THEORETIC VIEWON PROPOSITIONAL PROOF COMPLEXITY 4:3

Our second example is directed graph reachability: Given a directed graph G = (V,E)
with two distinguished vertices s, t ∈ V , we want to know whether there is a path from s to
t in G. Again, it is easy to encode this as a satisfiability problem in propositional logic, by
taking the conjunction of all implication clauses Xv → Xw, for all edges (v, w) ∈ E, together
with the two clauses 1→ Xs and Xt → 0. Clearly the resulting formula NonReach(G, s, t)
is unsatisfiable if, and only if, t is reachable from s in G. However, in clear contrast to
the formulas Iso(G,H) from above, we can easily prove unsatisfiability for the formulas
NonReach(G, s, t) in efficient variants of resolution such as Horn-Res and k-Res for k ≥ 2.

Our two examples demonstrate the following: while certain problems, such as directed
graph reachability, allow for small and efficient resolution proofs, other problems, such as
the graph isomorphism problem, provably require proofs of super-polynomial size even in
quite strong proof systems. This leads to the main question that we want to address in this
paper: is there a classification for those problems which can be solved in natural restricted
versions of propositional proof systems such as Horn-Res, k-Res and PCk (the degree-k
restriction of the polynomial calculus)? It came as a surprise to us that there is, indeed,
a very clear and tight classification of the power of all of these proof systems in terms of
definability in important fixed-point logics and infinitary logics which are well-studied in the
area of descriptive complexity theory.

Before we can state our results in detail, we have to explain what we mean by saying that
a problem, such as directed graph reachability, can be solved by a propositional proof system
Prop. As usual, each decision problem can be identified with a membership problem “A ∈ K?”
for some class of structures K. For instance, the graph reachability problem from above is
identified with the class KReach = {(V,E, s, t) : there is a path from s to t in G = (V,E)}.
Then we naturally want to say that a problem K can be solved by the proof system Prop if
we can find a reduction function f which maps structures A to inputs f(A) for Prop such
that A ∈ K if, and only if, Prop can prove that f(A) is not satisfiable. It is clear that we
only want to allow simple reduction functions f , because otherwise the computation of the
encoding could already contain part of the work to solve the problem. Coming from the area
of finite model theory the obvious and natural formalisation for “f being simple” is to say
that f is definable in first-order logic (FO). We introduce the precise technical definition of
such reductions, which is the notion of a first-order interpretation, in Section 2. Note that
for the two examples we discussed above the encoding functions are clearly FO-definable.

Having established this definition it turns out that our classification problem is really
about understanding the expressive power of the Lindström extensions of first-order logic
by generalised quantifiers for propositional proof systems Prop. We denote these logics
by FO(Prop). The basic idea of the logic FO(Prop) is to extend first-order logic by new
quantifiers QProp which are capable of simulating Prop. In other words, we just incorporate
into first-order logic the power to simulate Prop in an explicit way, that is the logics
FO(Prop) are a formalisation of the concept of oracle Turing-machines with access to Prop
in the world of first-order logic (the oracle calls to the proof system Prop correspond to
applications of the new generalised quantifiers). Again, the precise technical definitions of
the Lindström extensions FO(Prop) can be found in Section 2. We can now say that a
problem K can be solved in a proof system Prop if, and only if, it is definable in FO(Prop).
For instance, we saw that KReach is definable in the logics FO(Horn-Res) and FO(2-Res).

We proceed to describe our main results and give a rough sketch of the structure of this
article. This work is based on our conference paper [27]. However, the present article also

4:4 E. Grädel, M. Grohe, B. Pago, and W. Pakusa Vol. 15:1

contains some new results and substantial generalisations of our results from [27] on the
polynomial calculus.

In Section 3, we study the resolution proof system and its aforementioned restrictions
Horn-Resolution (Horn-Res) and Bounded-width-k Resolution (k-Res), for k ≥ 2. It turns
out that Horn-Res can express precisely the problems that are definable in least-fixed
point logic (LFP), that is FO(Horn-Res) = LFP. This readily follows by the well-known
fact that the problem of computing winning positions in reachability games (known as
GAME or alternating reachability) is complete for LFP with respect to FO-reductions.
More interestingly, we proceed to show that k-Res, for every k ≥ 2, is less powerful than
Horn-Res. In fact, FO(2-Res) = FO(TC), where FO(TC) is the extension of first-
order logic by a transitive closure operator. Moreover, we prove that, for every k ≥ 3,
FO(k-Res) = EFP, where EFP is the existential fragment of least fixed-point logic which
is known to be a strict fragment of full least fixed-point logic. We can also show that the
Lindström extensions for Horn resolution and width-k resolution have different structural
properties. While for FO(Horn-Res) a single application of a QHorn-Res quantifier suffices
to obtain the full expressive power, nesting of Qk-Res quantifiers is needed for the logics
FO(k-Res).

In Section 4, we then turn our attention to the polynomial calculus (PC), a propositional
proof system which is based on algebraic reasoning techniques. The polynomial calculus
manipulates polynomial equations over an underlying field F. A PC-refutation is a derivation
of the equation 0 = 1. As in the case of bounded-width resolution, if one restricts the
degree of the polynomials in all equations to some constant k ≥ 1, then one can search for
PC-proofs in polynomial time (when working over the field of rationals, the bit-complexity
of the coefficients must also be restricted to binary representations of polynomial length).
Besides restricting the degree, one can also vary the underlying field F. Specifically, we
consider the cases where F is the field of rationals (or reals) or a finite field. Moreover, the
polynomial calculus can also be restricted by weakening its proof rule for multiplication,
which defines a variant known as the monomial-PC (mon-PC). We denote its corresponding
restriction to degree k by mon-PCk.

For the case of the polynomial calculus over Q we show the following. First of all, if we
consider the monomial-PC restricted to some degree k ≥ 2, then this proof system mon-PCk

has precisely the same expressive power as fixed-point logic with counting (FPC), which is
a very expressive logic well-studied in descriptive complexity theory [17, 39]; formally, we
show that FO+(mon-PCk) = FPC for k ≥ 2 where FO+ denotes the extension of FO by a
numeric sort to match the setting of FPC. In particular, this separates the (monomial-)PC
from the resolution proof system since FPC is known to be much stronger than EFP and
LFP. In a second step, we generalise this characterisation for the monomial-PC to the full
polynomial calculus (PC). To deal with the already mentioned phenomenon of potentially
exceedingly large coefficients, we restrict the degree-k PC further and define, for any b ∈ N,
the proof system PCk,b as the degree-k PC with the limitation that all coefficients occurring

in a proof must be representable as fractions of binary numbers with at most nb bits each
(n refers to the number of variables in the input polynomials). Then we prove that for any
constants k, b, the proof system PCk,b captures FPC, just like mon-PCk does. From there,
we move on to the more common PCk with unrestricted bit-complexity, and observe that
we can define the existence of PCk-proofs in the infinitary counting logic Ck

∞ω. This logic
is strictly more expressive than FPC. The question whether PCk-proofs with unbounded
rational coefficients are also definable in FPC remains open. Yet, we can say that a positive

Vol. 15:1 A FINITE-MODEL-THEORETIC VIEWON PROPOSITIONAL PROOF COMPLEXITY 4:5

answer to it seems unlikely because it is not even clear that this problem is decidable in
polynomial time: As shown by Hakoniemi [31], there exists a set Qn of polynomials over
Boolean variables that has a refutation in the degree-2 polynomial calculus, but none that
requires less than exponentially many bits for the coefficients; it is doubtful that such a
refutation can be computed in polynomial time.
On our way we prove a result which is of independent interest, namely that FPC can define
solution spaces of linear equation systems over the rationals. We need this in order to
express PCk,b in FPC, and indirectly also to express PCk in Ck

∞ω. The latter result allows
us to answer an open question by Grohe and Berkholz from [10] about the relative power of
mon-PCk and PCk with respect to the graph isomorphism problem.

In Section 5, we turn our attention to the polynomial calculus over finite fields. It is
easy to see that the connection between FPC and the (monomial-)PC breaks down. We
set out to establish criteria on the characteristic of the underlying finite field and certain
finite-model-theoretic properties of polynomial equation systems that allow us to retain
FPC-definability of bounded-degree PC-refutations. This result proves to be very useful in
order to derive lower bounds for the polynomial calculus over finite fields. There are also
technical results in this section which should be of independent interest. For example, we
show that classes of CFI-structures over expander graphs are homogeneous with respect to
FPC-definability.

Finally, in Section 6, we discuss how we can apply our FPC-definability results in
order to prove lower bounds for the polynomial calculus. We give examples including the
graph isomorphism problem and constraint satisfaction problems. Although most (but
not all) of the lower bounds have been known before, we present new proofs which only
use finite-model-theoretic arguments. Our novel, uniform approach to these lower bounds,
also suggests a way to capture a common weakness of many propositional proof systems:
whenever a proof system has a stratification which allows for symmetric refutations that
can be described and verified in counting logic with a bounded number of variables, our
lower bounds techniques can be applied. For illustration, we discuss the example of the
Positivstellensatz proof system in Section 7.

Related work. Let us discuss some related work. The most relevant result to mention here
is the characterisation by Atserias and Dalmau of resolution width in terms of the number
of pebbles required to win an existential pebble game played on a given CNF-formula and
a structural encoding of truth assignments [2, 4]. This resembles our result that bounded-
width resolution corresponds to existential least fixed-point logic. Using their game-theoretic
characterisation, Atserias and Dalmau can reprove many of the known lower bounds on
resolution width. Again, this is similar to the applications we give in Section 6.1.

However, what makes our setting different from the approach of Atserias and Dalmau
is that we always consider the power of proof systems only up to logical reductions. This
reflects, for example, in our result saying that FO(3-Res) = FO(4-Res), i.e. that 3-Res has
the same expressive power as 4-Res. But, certainly, this only holds if we allow first-order
reductions to transform inputs between 4-Res and 3-Res. Hence our characterisation of
resolution width is “coarser” than that of Atserias and Dalmau. But it has the advantage of
being more robust. For instance, in the situation of lower bound proofs, we can avoid playing
pebble games directly on the inputs to proof systems, such as CNF-formulas, but instead it
suffices to play suitable games on pairs of structures in which these inputs interpret. This
can make the description of winning strategies much simpler. Furthermore, our setting

4:6 E. Grädel, M. Grohe, B. Pago, and W. Pakusa Vol. 15:1

allows us to prove lower bound results not depending on specific encodings of a problem,
since our logics are closed under interpretations, see Section 6.

Besides this, we want to mention the series of papers [5, 10, 38, 29] which establish
surprisingly tight connections between the equivalence of graphs in counting logic and
their indistinguishability by linear programming techniques (Sherali-Adams relaxiations of
graph isomorphism polytopes) and algebraic propositional proof system. Similar to our
applications, these results also allow the transfer of lower bounds from finite model theory
to get lower bounds on proof complexity. In particular, we use notions and ideas of [10]
in Section 4. Let us also point to the excellent work of Dawar and Wang [20, 21] which
connect finite model theory with semi-algebraic proof systems. This work, and our own, has
certainly also interesting connections to the very recent work by Atserias and Ochremiak
[7] showing by means of finite-model-theoretic arguments that the Sums-of-Squares proof
system can be simulated in Cω

∞ω. Surely these connections deserve to be explored further.

2. Preliminaries

This is a paper in finite model theory. All structures are relational and finite if not explicitly
stated otherwise. We assume that the reader has a solid background in logic. To fully
understand and appreciate our results, familiarity with the ideas and techniques of finite
model theory will be necessary (see [22, 34, 37, 25]). In particular, a good knowledge of
fixed-point logic with counting is needed in order to understand our definability results for
the polynomial calculus in Sections 4,5,6, see the above references plus [39, 17].

2.1. Finite Relational Structures. Given a (finite, relational) vocabulary (or signature) τ ,
a τ -structure A consists of a finite universe A and a relation RA ⊆ Ak for each k-ary relation
symbol R in τ . If we consider (undirected) graphs, that is structures over the vocabulary
τ = {E}, then we usually use a different notation and denote graphs by G = (V,E). In
particular, we denote the vertex set of a graph G by V = V (G) and the set of edges E by
E = E(G). The class of all (finite) τ -structures is denoted by Str(τ). Sometimes we want to
distinguish certain constants in τ -structures A. For a tuple of parameters ~z we denote by
Str(τ, ~z) the class of all pairs (A, ~z 7→ ~a) where A ∈ Str(τ). For our applications in Section 5
and Section 6, we also fix an encoding of ordered pairs (A,B) of τ -structures as structures
(A,B) of some vocabulary τpair.

2.2. Logics without Counting. We assume that the reader is familiar with first-order
logic (FO) and least and inflationary fixed-point logic (LFP and IFP). Infinitary finite
variable logic Lω∞ω extends FO by infinite conjunctions and disjunctions in formulas, but
with the additional requirement that formulas only contain a finite number of variables. More
precisely, if we denote by Lk∞ω the k-variable fragment of Lω∞ω, then we have Lω∞ω =

⋃
k Lk∞ω.

Formulas of LFP with k variables can be translated into equivalent formulas of Lk∞ω. In
particular, LFP ≤ Lω∞ω (in this article we use the notation L1 ≤ L2 to say that every class
of structures that is L1-definable is also L2-definable, that is ≤ refers to semantic inclusion
of logics wrt. sentences).

Vol. 15:1 A FINITE-MODEL-THEORETIC VIEWON PROPOSITIONAL PROOF COMPLEXITY 4:7

2.3. Logics with Counting. (Infinitary) counting logic Cω
∞ω is the extension of Lω∞ω that

allows counting quantifiers ∃≥mx (“there exist at least m values for x”) for each m (with the
same restriction on the number of variables as before, that is each Cω

∞ω-formula only contains
a finite number of variables). Note that each individual quantifier ∃≥mx can be expressed
using m first-order quantifiers and m distinct variables for x. However, the translation leads
to formulas with a higher quantifier rank and, moreover, it increases the number of required
variables. Analogous to the above, we denote by Ck

∞ω the fragment of Cω
∞ω consisting of all

formulas with at most k (free or bound) variables. Then Cω
∞ω =

⋃
k Ck
∞ω. For two structures

A,B (of the same vocabulary) we write A ≡k B if the structures cannot be distinguished by
any formula of Ck

∞ω.
We now recall the definition of fixed-point logic with counting (FPC). In a nutshell,

FPC is the extension of inflationary fixed-point logic (IFP) by counting terms. Formulas
of FPC are evaluated over the two-sorted extension of an input structure A by a copy
of the natural numbers. Following [18] we denote by A# the two-sorted extension of a
τ -structure A = (A,R1, . . . , Rk) by N = (N,+, ·, 0, 1), that is the two-sorted structure
A# = (A,R1, . . . , Rk,N,+, ·, 0, 1) where the universe of the first sort (also referred to as
vertex sort) is A and the universe of the second sort (also referred to as number sort or
counting sort) is N. For both, the vertex and the number sort, we have a collection of typed
first-order variables, that is the domain of any variable x (over the input structure A) is
either A or N. Similarly, for second-order variables R we allow mixed types, that is a relation
symbol R of type (k, `) ∈ N× N stands for a relation R ⊆ Ak × N`.

Of course, already FO is undecidable over the class of two-sorted structures A#. To
obtain a logic with polynomial-time data complexity, we have to restrict the range of
quantifiers over the numeric sort by fixed polynomials. More precisely, FPC-formulas can
use quantifiers over the numeric sort only in the form Qx ≤ nq.ϕ where Q ∈ {∃,∀} and where
q ≥ 1 is a fixed constant. The range of the quantifier Q is {0, . . . , nq} where n denotes the
size of the input structure A. To simplify notation, we henceforth assume that each numeric
variable x comes with a built-in restricted range polynomial, that is x = (x ≤ nq). For better
readability, we usually omit this range polynomial in our notation. By this convention, each
variable x has a predefined range in any input structure A# of polynomial size (which is
either A or {0, . . . , nq} for a fixed q ≥ 1). We denote this range by dom(A, x) (or just by
dom(x) if A is clear from the context). Analogously, for a tuple of variables ~x = (x1, . . . , xk)
we set dom(~x) = dom(x1)× · · · × dom(xk). By this, we also obtain polynomial bounds for
numeric components in fixed-point definitions [ifp Rx̄ . ϕ(R, x̄)] (x̄). Indeed, the inflationary
fixed-point defined by this formula is of the form R ⊆ dom(~x).

The crucial elements of FPC are counting terms which allow to define cardinalities
of sets. Starting with an arbitrary FPC-formula ϕ(x) one can form a new counting term
s = [#x . ϕ] whose value in A is just the size of the set defined by ϕ in A. In particular,
the term s is a numeric term, that is s takes its value in the number sort. More precisely,
for an input structure A, the value sA ∈ N of s in A is the number of elements a ∈ A such
that A |= ϕ(a). One can allow counting terms of a more general form without increasing
the expressive power of FPC. In particular, counting terms [#x̄ . ϕ] over mixed tuples of
variables can be simulated with unary counting terms and fixed-point operators; we refer
to [39] for more details and background on fixed-point logic with counting.

An important fact that we are going to use frequently is that formulas of FPC with
k variables can be rewritten as equivalent Ck

∞ω-formulas. In particular, we have that
FPC ≤ Cω

∞ω. In Section 5, we also make use of the fact that for every k ≥ 1, there exists

4:8 E. Grädel, M. Grohe, B. Pago, and W. Pakusa Vol. 15:1

an FPC-formula ϕ with O(k) many variables such that (A,B) |= ϕ if, and only if, A ≡k B,
see e.g. [39].

In Section 4, we also make use of the numeric extension of first-order logic, denoted by
FO+, which is defined as FPC, but without the rule for forming (inflationary) fixed points.

2.4. Logical Interpretations and Lindström Quantifiers. The logical counterpart of
the notion of an (algorithmic) reduction is the notion of a logical interpretation. A logical in-
terpretation I transforms an input structure A into a new structure B = I(A) and this trans-
formation is defined by formulas of some logic L. In this article we consider L-interpretations
with respect to different underlying logics L, such as FO,FO+,LFP,FPC,Cω

∞ω. Basically,
the definition of an L-interpretation is uniform for all of these logics. However, there is one
exception for the case of FO+ and FPC where we have the special situation that formulas
can use numeric variables. As a consequence, the interpreted structures I(A) can contain
such numeric elements. In this section, we further introduce Lindström quantifiers, also
known as generalised quantifiers, which capture the notion of oracles in the realm of finite
model theory.

Let us start with the case of single-sorted logics L, such as FO,LFP, or Cω
∞ω. Let σ, τ

be signatures with τ = {S1, ..., S`}. Let si denote the arity of Si. An L[σ, τ]-interpretation
is a tuple

I(~z) = (ϕδ(~x, ~z), ϕ≈(~x1, ~x2, ~z), ϕS1(~x1, ..., ~xs1 , ~z), ..., ϕS`
(~x1, ..., ~xs` , ~z))

where ϕδ, ϕ≈, ϕS1 , ..., ϕS`
∈ L[σ] and ~x, ~x1, ..., ~xs` are tuples of pairwise distinct variables of

the same length d and ~z is a tuple of variables pairwise distinct from the x-variables. We
call d the dimension and ~z the parameters of I(~z).

A d-dimensional L[σ, τ]-interpretation I(~z) defines a partial mapping I : Str(σ, ~z) →
Str(τ) in the following way: For (A, ~z 7→ ~a) ∈ Str(σ, ~z) we obtain a τ -structure B over the

universe {~b ∈ Ad | A |= ϕδ(~b,~a)}, setting SB
i = {(~b1, ..,~bsi) ∈ Bsi | A |= ϕSi(

~b1, ...,~bsi ,~a)}
for each Si ∈ τ . Moreover let E = {(~b1,~b2) ∈ Ad ×Ad | A |= ϕ≈(~b1,~b2,~a)}. Now we define

I(A, ~z 7→ ~a) :=

{
B/E if E is a congruence relation on B

undefined otherwise.

We say that I interprets B/E in A.
Let us briefly discuss the case of two-sorted logics. If L is FPC or FO+, then we have

the same definition of an L-interpretation as above. However, note that now the variable
tuples ~x, ~z, . . . may contain numeric variables. Recall that each numeric variable x has
an explicit polynomial range bound dom(A, x) which is either A or {0, . . . , nq} for a fixed
q ≥ 1. As a consequence, the domain of the structure I(A, ~z 7→ ~a) does not longer consist of
equivalence classes of tuples in Ad but, more generally, it consists of equivalence classes of
elements in dom(A, ~x) (and note that these tuples may contain numeric components).

Next, we introduce Lindström quantifiers. Let L be a logic and K ⊆ Str(τ) a class
of τ -structures with τ = {S1, ..., S`}. The Lindström extension L(QK) of L by Lindström
quantifiers for the class K is obtained by extending the syntax of L by the following formula
creation rule:

Let ϕδ, ϕ≈, ϕS1 , ..., ϕS`
be formulas in L(QK) that form an L[σ, τ]-interpreta-

tion I(~z). Then ψ(~z) = QKI(~z) is a formula in L(QK) over the signature σ,

Vol. 15:1 A FINITE-MODEL-THEORETIC VIEWON PROPOSITIONAL PROOF COMPLEXITY 4:9

with (A, ~z 7→ ~a) |= QKI(~z), if, and only if, B := I(A, ~z 7→ ~a) is defined and
B ∈ K.

As we see, adding the Lindström quantifier Q to the logic L is the most direct way to
make the class K definable in L. We use this key notion to capture the power of propositional
proof systems up to first-order definable transformations.

2.5. Representing Propositional Formulas as Relational Structures. As always
when we are dealing with logics in algorithmic contexts, we have to agree on encodings of
(non-structural) inputs as relational structures. In this article such inputs are, for instance,
propositional formulas, polynomial equation systems, matrices and vectors over fields. In
all of these cases, it is straightforward to come up with natural structural representations.
Most often, we refrain from describing such encodings explicitly. For it is rather tedious,
and, more importantly, the concrete details do not matter too much: all (natural) encodings
will be interdefinable in first-order logic.

To get a better intuition, let’s go through one encoding explicitly. Let us briefly discuss
two ways to represent propositional formulas (in CNF) as finite relational structures. Perhaps
the most obvious representation of a CNF-formula ψ as a structure A(ψ) is based on the
vocabulary {C, V, P,N}; the universe of A(ψ) consists of the variables and the clauses of
ψ, the monadic relations V and C identify the variables and clauses, respectively, and the
binary relations P and N specify which variables appear positively and negatively in which
clauses; so Pvc is true in A(ψ) if the variable v appears positively in the clause c, and
analogously for N . A different representation, that sometimes leads to more elegant logical
descriptions works with the set L of literals and with a self-inverse bijection ¬ : L→ L, so
that ψ would be represented by A(ψ) = (A,C,L,¬,∈) where A is the set of clauses and
literals, ¬(x) is the complementary literal to x, and x ∈ c means that the literal x occurs in
the clause c (note that, formally, we do not allow function symbols in our vocabularies, but,
of course, we can substitute function symbols by their graph relations).

3. Resolution and (Existential) Least Fixed-Point Logic

In this section we study the resolution proof system. We start by showing that Horn-
Resolution (Horn-Res) is complete for least fixed-point logic (LFP) wrt. (many-to-one)
first-order interpretations, see Theorem 3.3. In a second step, we consider bounded-width
resolution (k-Res, for k ≥ 2). We show that bounded-width resolution is strictly weaker
than Horn-Resolution from the viewpoint of finite model theory. Specifically, we prove that
2-Res is complete for transitive closure logic FO(TC) (Theorem 3.6) and that for every
k ≥ 3, k-Res is complete for the existential fragment of least fixed-point logic (EFP), see
Theorem 3.7. Since it is known that FO(TC) < EFP < LFP, this separates the power of
these polynomial-time restrictions of the resolution proof system.

3.1. Horn Resolution Captures Least Fixed-Point Logic. Let posLFP be the frag-
ment of LFP-formulas that are in negation normal form (i.e. negation is applied only to
input atoms), in which each fixed-point variable is bound only once, and that do not make
use of greatest fixed points. Further, let EFP0 be the basic existential fragment of LFP; it
consists of those formulas in posLFP whose quantifiers are all existential.

4:10 E. Grädel, M. Grohe, B. Pago, and W. Pakusa Vol. 15:1

It is known that, on finite structures (but not in general), every LFP-formula can be
effectively translated into an equivalent one in posLFP. On the other side EFP0 is strictly
weaker; it has the same expressive power as Datalog with negation of input atoms.

Theorem 3.1. For every ϕ ∈ posLFP[τ] there is a first-order interpretation Iϕ that maps
finite τ -structures to propositional Horn formulas ψA,ϕ such that A |= ϕ if, and only if, ψA,ϕ

is unsatisfiable. Further, if ϕ is in EFP0 then all clauses in ψA,ϕ have width at most three.

Proof. Fix a formula ϕ ∈ posLFP[τ]. For every finite τ -structure A, with universe A, we
construct the propositional Horn formula ψA,ϕ as follows. An instantiated subformula of
ϕ is an expression β(ā) which is obtained by taking some subformula β(x̄) of ϕ and by
instantiating every free variable x by some element a ∈ A. We now take for every instantiated
subformula β of ϕ a propositional variable Xβ , and inductively define a set C(A, ϕ) of clauses
as follows.

(1) If β is a τ -literal, then we add 1→ Xβ in case that A |= β and Xβ → 0 in case A 6|= β.
(2) If β = η ∨ ϑ, then we add the clauses Xη → Xβ and Xϑ → Xβ.
(3) If β = η ∧ ϑ, then we add the clause Xη ∧Xϑ → Xβ.
(4) If β = ∃xη(x), then we add all clauses Xη(a) → Xβ for a ∈ A.
(5) If β = ∀xη(x), then we add the clause (

∧
a∈AXη(a))→ Xβ.

(6) If β = [lfpRx̄ . η](ā) or β = Rā, then we add the clause Xη(ā) → Xβ.

By induction, it readily follows that the minimal model of all these clauses sets the
variable Xβ to true if, and only if, A |= β (with fixed-point variables interpreted by their
least fixed-point on A). Let now ψA,ϕ be defined as the conjunction of all clauses in C(A, ϕ)
together with Xϕ → 0. Then ψA,ϕ is unsatisfiable if, and only if, A |= ϕ.

We observe that the only clauses of size larger than three are those coming from universal
quantifiers. Hence, if there are no universal quantifiers, the formula only has clauses of size
at most three. Finally it is clear that, for every fixed ϕ ∈ posLFP[τ], we can interpret (a
representation of) the formula ψA,ϕ inside A, by using an FO-interpretation Iϕ.

This shows that LFP ≤ FO(Horn-Res). Actually we established a stronger result.

Theorem 3.2. For every formula ϕ ∈ LFP there exists a first-order interpretation Jϕ such
that QHorn-Res(Jϕ) is equivalent to ϕ on finite structures. In particular, each LFP-formula
can be translated into an equivalent FO(Horn-Res)-formula with a single application of the
generalised quantifier QHorn-Res.

We are ready to prove that FO(Horn-Res) has the same expressive power as LFP.

Theorem 3.3. On finite structures, LFP = FO(Horn-Res).

It remains to show that FO(Horn-Res) ≤ LFP, that is we have to express Horn
resolution in LFP. Recall that a propositional Horn formula ψ admits a derivation of the
empty clause if, and only if, ψ contains a clause in which all variables appear negatively,
written X1 ∧ · · · ∧Xk → 0, such that all unit clauses {Xi} for i = 1, . . . , k can be derived
from ψ by Horn resolution.

Let ψ be presented as a structure A(ψ) with universe C∪V and vocabulary {C, V, P,N}.
Let D be the set of variables v ∈ V such that the clause {v} can be derived from ψ by Horn
resolution. Then ψ is unsatisfiable if, and only if, A(ψ) |= ∃c(Cc∧¬∃xPxc∧∀x(Nxc→ Dx)).
The set D is definable by the LFP-formula [lfpDx . ∃c(Pxc ∧ ∀y(Nyc→ Dy))](x).

Vol. 15:1 A FINITE-MODEL-THEORETIC VIEWON PROPOSITIONAL PROOF COMPLEXITY 4:11

3.2. Bounded-Width Resolution and Existential Least Fixed-Point Logic. Intu-
itively, existential least fixed-point logic (EFP) extends EFP0 by stratified negation. This
means that it permits fixed-point formulas over existential formulas which may depend on
closed fixed-point relations, defined in a lower stratum, and these can be used also in negated
form. Thus, negation (and hence, implicitly, also universal quantifiers) are present in a
limited form, but least fixed-point recursions may never go through negation or universal
quantification. In fact, EFP is equivalent to Stratified Datalog and is weaker than full
LFP [16, 36].

Definition 3.4. Existential fixed-point logic EFP :=
⋃
`≥0 EFP` generalises EFP0 as

follows. The stratum EFP`+1 is the closure under disjunction, conjunction and existential
quantification of formulas of the form [lfp Rx̄.∃ȳϕ(R, x̄, ȳ)](x̄) where ϕ(R, x̄, ȳ) is obtained
from a quantifier-free formula, that may contain positive and negative occurrences of
additional relations S1, . . . , Sm, by substituting these relations by formulas from EFP`.

Let us remark that the logic EFP is known under different names (we stick to the term
EFP which was used in [16, 36]). For instance, in [22], the term bounded fixed-point logic
(BFP) is used to refer to the same logic. Another common name for this logic is stratified
fixed-point logic (SFP) in reference to its equivalence with Stratified Datalog.

Notice that first-order logic FO is contained in EFP, but not in any bounded level
EFP`, because every quantifier alternation in FO must be simulated by an additional level
of stratified negation, again see [16, 36]. For the same reason EFP, but none of its levels
EFP`, is closed under first-order operations. As a consequence of Theorem 3.1 we can infer

Theorem 3.5. On finite structures, EFP ≤ FO(3-Res).

Proof. Theorem 3.1 directly establishes this for EFP0. So assume that the claim is established
for EFP`. Every formula in EFP`+1 can be written as an EFP0-formula over predicates
that are EFP`-definable. Hence, by applying Theorem 3.1 once more, it can be rewritten as
an FO(3-Res)-formula over predicates that are themselves definable in FO(3-Res). Since
Lindström extensions of FO are closed under nesting of generalised quantifiers, it follows
that also EFP`+1 ≤ FO(3-Res).

We require clauses of width 3 for translating EFP-formulas into Horn formulas. In
fact, if we restrict to clauses of width 2, then we obtain the power of first-order logic
with a transitive closure operator FO(TC). This immediately follows from the fact that
satisfiability of 2-CNF formulas reduces to graph reachability, and from the reduction of
graph reachability to the non-satisfiability problem for a 2-CNF formula that we described
in the introduction.

Theorem 3.6. On finite structures, FO(2-Res) = FO(TC).

3.3. Simulating Bounded-Width Resolution in EFP. To express width-k resolution,
for fixed k ≥ 1, in EFP, we shall use the representation of a CNF-formula ψ by structures
A(ψ) = (A,C,L,¬,∈) where C is the set of clauses and L is the set of literals, and the
universe is A = C ∪ L ∪ {0}. Further we shall describe the set of all derivable clauses of size
at most k as a k-ary relation D ⊆ (L ∪ {0})k, that contains those k-tuples (x1, . . . , xk) for
which {xi : i ≤ k, xi 6= 0} is a clause that is derivable from ψ. This relation D is defined by
a fixed-point formula [lfpD~x . ϕ(D,~x)](~x) where ϕ(D,~x) expresses the following. Either

4:12 E. Grädel, M. Grohe, B. Pago, and W. Pakusa Vol. 15:1

(1) there exists a clause c ∈ C such that c = {x1, . . . , xk} \ {0}, or
(2) there exist tuples ~y, ~z ∈ D such that, for some i, j, the literal zj is the negated literal to

yi, and ({y1, . . . , yk} ∪ {z1, . . . , zk}) \ {yi, zj , 0} = {x1, . . . , xk} \ {0}.
When spelling out these equations in first-order logic, we can express ϕ(~x,D) by an

existential FO-formula ∃~y α(~x, ~y,D,Q) where Q is FO-definable by a formula (with quantifier
prefix ∃∗∀) that does not depend on D. This yields a formula in EFP1. Since EFP is closed
under FO-operations, this proves

Theorem 3.7. On finite structures, FO(k-Res) = EFP for all k ≥ 3.

Another interesting observation is that if we restrict the nesting depth of k-Res-
quantifiers in FO(k-Res)-formulas to some constant d ≥ 1, then we obtain a fragment
FO(k-Res)≤d of FO(k-Res) which is strictly less expressive. This follows from the results
of Grädel and McColm [26] and the observation that formulas in FO(k-Res)≤d can be
written as Lω∞ω-formulas with at most d many nested unbounded quantifier blocks. However,
as Grädel and McColm show there are formulas of transitive closure logic FO(TC) which
require more than d many such blocks when expressed as equivalent Lω∞ω-formulas. Since
FO(TC) ≤ FO(k-Res), it follows that for every d ≥ 1 we have FO(k-Res)≤d < FO(k-Res).
Note that this is different from the case of Horn-Resolution where nesting of Horn-Res-
quantifiers was not necessary. In other words, while Horn-Resolution Horn-Res is many-to-
one complete for LFP wrt. first-order interpretations, k-Res is only complete wrt. first-order
Turing reductions for FO(TC) and EFP, respectively.

4. The Polynomial Calculus over the Field of Rationals and Fixed-Point
Logic with Counting

We now turn our attention to the polynomial calculus (PC). The polynomial calculus is an
important and well-studied propositional proof system that is based on algebraic reasoning
techniques. The idea is to represent Boolean formulas by polynomial equation systems over
some field F and to show that, by manipulating these polynomial equations, one can derive
an inconsistent equation such as 0 = 1. Analogous to the case of bounded-width resolution
k-Res, it is possible to stratify the polynomial calculus along a parameter k ≥ 2 to obtain
polynomial-time fragments. More precisely, if we restrict the degree of all polynomials in
PC-refutations to some constant k ≥ 2, then we obtain (incomplete) fragments PCk of the
full PC in which proofs can be found in polynomial time (over the rationals, we must also
restrict the bit-complexity of the coefficients to ensure this). One can define the polynomial
calculus with respect to any underlying field F. Throughout this section, this underlying
field F will always be the field of rationals Q. In the following Section 5, we turn our
attention to the case of finite fields.

Another important fragment of the polynomial calculus is the so-called monomial-PC
(mon-PC). This restricted variant of the full PC was introduced by Berkholz and Grohe
in [10]. Their intention was to precisely characterise the power of a combinatorial graph
isomorphism test, the so-called Weisfeiler-Leman algorithm [13], in terms of propositional
proof complexity. Specifically, they proved that two graphs G and H can be distinguished by
the k-dimensional Weisfeiler-Leman algorithm if, and only if, the k-dimensional monomial-PC
(mon-PCk) can refute the solvability of a certain system of polynomial equations ISO(G,H)
over Q which encode the graph isomorphism problem for G and H. In this section, we
analyse the power of the monomial-PC and the (full) PC from the perspective of finite model

Vol. 15:1 A FINITE-MODEL-THEORETIC VIEWON PROPOSITIONAL PROOF COMPLEXITY 4:13

theory. In our main result we are going to show that both proof systems, the bounded-degree
monomial-PC and the bounded-degree and bounded bit-complexity PC, have precisely
the same expressive power as fixed-point logic with counting (FPC), which is a natural
and powerful logic of great importance in the area of descriptive complexity theory (see
Theorem 4.11). For the bounded-degree PC over Q without any restriction on the complexity
of the coefficients, we show that it is contained in finite variable infinitary counting logic.
As a consequence, the correspondence between the Weisfeiler-Leman algorithm and the
monomial-PC can be generalised to the full PC (though we have to sacrifice the tightness of
the connection between the degree of polynomials and the dimension of the Weisfeiler-Leman
algorithm), see Theorem 6.6.

Our proof consists of three parts. First of all, we show that proofs in the monomial-PC
can be expressed in FPC, see Subsection 4.2. This shows that FO+(mon-PCk) ≤ FPC.
After that, we show in Subsection 4.3 that FPC-iterations can be simulated using the
monomial-PC. Taken together this shows that FO+(mon-PCk) = FPC. As the final step,
in Subsection 4.4, we show that FPC can also express degree-k refutations of bounded
bit-complexity in the (full) polynomial calculus over Q, which also entails that PCk with
unbounded coefficients can be simulated in Cω

∞ω.

4.1. The Polynomial Calculus. We start with some background on the polynomial
calculus and its restricted variant, the monomial-PC. Both systems refute the solvability
of a given set of (multivariate) polynomial equations over some field F using proof rules
that manipulate such equations. In this paper, F will either be the field of rationals Q or
a finite field Fpn of size pn for p ∈ P, where P denotes the set of primes and where n ≥ 1.
We denote by F[X] the ring of polynomials in variables X = {Xj : j ∈ J}, for some index
set J and with coefficients in F. For an “exponent” α : J → N we let the monomial Xα be

defined as Xα = Πj∈JX
α(j)
j . Then polynomials f ∈ F[X] can be written as f =

∑
α fα ·Xα

where the fα ∈ F are coefficients from the field F and such that fα 6= 0 for finitely many α
only. The degree deg(Xα) of a monomial Xα is defined as |α| =

∑
j∈J α(j), and the degree

of a polynomial is defined as the maximal degree of its monomials. A polynomial equation
is an equation of the form f = 0 for a polynomial f ∈ F[X]. For better readability, we
usually omit the equality “= 0” when we specify polynomial equations, that is we identify
polynomials f ∈ F[X] with the corresponding normalised polynomial equations f = 0. A
system of polynomial equations is a set P = {fi : i ∈ I} consisting of polynomials fi ∈ F[X]
for all i ∈ I where I is an (unordered) index set. A solution of P is a common zero a ∈ FJ
of all polynomials in P. In what follows, we only consider systems P = {fi : i ∈ I} which
contain for every variable X = Xj , j ∈ J , the polynomial equation (X2 − X) = 0. The
axioms (X2 −X) = 0 enforce that each variable X = Xj , j ∈ J , can only take values 0 or 1.
These equations encode the Boolean setting (truth values) that we are interested in.

The polynomial calculus is based on the following result from algebra which is known as
Hilbert’s Nullstellensatz. It says that the non-solvability of the system P = {fi : i ∈ I} of
polynomial equations is equivalent to the existence of polynomials gi ∈ F[X], i ∈ I, such that∑

i∈I gi · fi = 1. The polynomials gi are called a Nullstellensatz refutation for the system P.
The idea of the polynomial calculus is to search for such polynomials gi in a sequential way.

Definition 4.1. The inference rules of the polynomial calculus (PC) over the ring of
polynomials F[X] are as follows:

4:14 E. Grädel, M. Grohe, B. Pago, and W. Pakusa Vol. 15:1

(Multiplication)
f

Xf
where X ∈ X

(Linear Combination)
g, f

ag + bf
where a, b ∈ F

The goal of the polynomial calculus is to derive with these rules, from a collection P of
axioms p ∈ P, the constant polynomial 1 ∈ F[X], in order to prove that the polynomials
in P have no common zero.

The monomial-PC (mon-PC) is the restriction of the (full) PC that permits the use of
the multiplication rule only in the cases where f is either a monomial or the product of a
monomial and an axiom. A polynomial equation system P has a refutation of degree k ≥ 1
in the PC (or mon-PC) if the constant polynomial 1 ∈ F[X] can be derived from P using
only polynomials of degree at most k.

The polynomial calculus, and the monomial-PC, are clearly sound and, by Hilbert’s
Nullstellensatz, also complete proof systems. However, completeness requires unbounded
degree in refutations. In fact, as we indicated before, the “degree of polynomials” for the
PC (mon-PC) is a complexity measure with very similar properties as the “width of clauses”
measure for the resolution proof system. If we restrict the PC (mon-PC) to polynomials of
degree at most k, for some fixed k ≥ 1, then the systems become incomplete, but admit proof
search in polynomial time (again, for PC over Q, we must also restrict the bit-complexity
of the coefficients). In what follows, whenever we speak of the monomial-PC or the (full)
PC, then we usually refer to a variant with restricted degree k ≥ 1. If we want to make this
constant k explicit, then we denote the corresponding proof system by mon-PCk and PCk,
respectively. Another fact which we use implicitly throughout this section is that the axioms
(X2 −X) guarantee that in (monomial-)PC proofs we can restrict ourselves to multilinear
polynomials. To see this, say that we were able to derive the polynomial p = X2Y + Z
within some (monomial)-PC proof. Of course, p is not multilinear. However, we can use the
axiom (X2 −X) together with the “linear combination”-rule to reduce this polynomial to
the corresponding multilinear polynomial p′ = XY +Z. Indeed, p′ = p−Y (X2−X). Hence,
restricting to multilinear polynomials, and modifying the multiplication rule accordingly
with implicit linearisation, does not change the power of the corresponding proof systems.
For a polynomial p ∈ F[X] we denote its multilinearisation by MultLin(p). So, from now on
we stick to the setting of implicitly multilinearising all polynomials which precisely captures
the semantics of the polynomial equations (X2 −X) = 0.

We remind the reader that in this section the underlying field F for the (monomial-)PC
is always the field of rationals Q.

4.2. Monomial-PC in Fixed-Point Logic with Counting. Our first aim is to show that
FPC can express mon-PCk-refutations over the rationals using only O(k) many variables.
Of course, in order to obtain such a definability result, we have to agree on an encoding
of sets P of rational, multilinear polynomials as finite relational structures. Similar to our
representation of CNF-formulas described in Section 2, a natural encoding can be based on a
many-sorted structure AP whose universe is partitioned into sets of polynomials, (multilinear)
monomials, variables, and rational coefficients that occur in P. As usual, we represent
rationals as fractions of integers using binary encoding. Hence, AP provides a linear order
of sufficient length to encode these binary strings. Again, the exact technical details are not
important, as long as the encoding has some natural properties, such as FO-definability of

Vol. 15:1 A FINITE-MODEL-THEORETIC VIEWON PROPOSITIONAL PROOF COMPLEXITY 4:15

the class of valid encodings. By a slight abuse of notation, we also denote by mon-PCk the
class of structures AP which encode a system P of polynomials over Q which can be refuted
in mon-PCk.

Theorem 4.2. For every k ≥ 1, mon-PCk ∈ FPC.

Given a set of multilinear polynomials P of degree at most k, we consider the set
VP = mon-PCk(P) of multilinear polynomials which can be derived from P using mon-PCk.
The first observation is that VP is a Q-linear space. This easily follows since we can take
Q-linear combinations of polynomials that we derived. Now, since this vector space VP only
contains multilinear polynomials of degree at most k, we can naturally associate polynomials
p ∈ VP with vectors p ∈ QMk where the index set Mk denotes the set of all multilinear
monomials of degree at most k. For fixed k ≥ 1, this set Mk is of polynomial size nO(k).

To prove Theorem 4.2 we are going to express in FPC an inductive algorithm, that
is based on a similar algorithm for the full polynomial calculus from [14], for computing
a generating set for the Q-linear space VP . Then, in order to see whether mon-PCk can
refute the system P , we simply check whether the constant polynomial 1 is contained in VP ,
see Figure 1.

Input: Set of multilinear polynomials P ⊆ QMk

Output: B ⊆ QMk such that 〈B〉 = mon-PCk(P)
// where 〈B〉 denotes the Q-linear subspace generated by B

B := {MultLin(m · p) | p ∈ P,m a monomial such that deg(MultLin(m · p)) ≤ k}
// Initialisation (lift all axioms in P up to degree k)

repeat
for all monomials m ∈ 〈B〉, deg(m) < k do
B := B ∪ {MultLin(X ·m) : for some variable X}

end for
until B remains unchanged
return B

Figure 1: FPC-procedure to define generating set for VP = mon-PCk(P)

During the run of the algorithm we iteratively construct a set B ⊆ VP of polynomials
such that 〈B〉 ≤ VP . Here, 〈B〉 denotes the Q-linear subspace generated by the polynomials
in B (considered as Mk-vectors over Q). Moreover, we ensure that at termination we have
〈B〉 = VP , see Figure 1. One important point to observe is that after the initialisation step we
only add monomials to the set B. This closure operation is sufficient for the monomial-PC,
since, except for the given axioms in P of which we take care at initialisation, we can only
use the multiplication (or lifting) rule for monomials. Since there are only polynomially
many different monomials of degree at most k, for a fixed k, this means that the algorithm
is guaranteed to terminate after a polynomial number of iterations.

It is not obvious how to express this algorithm in FPC. Most steps, such as the
representation of the set B and the multilinearisation of polynomials, are easy to formalise,
but there is a severe obstacle hidden in the condition for the main loop. Here, we want to
iterate, in parallel, through all monomials m ∈ 〈B〉. This condition “m ∈ 〈B〉” translates
to solving a linear equation system over Q. Although it is provably impossible to express
the method of Gaussian elimination in FPC, since it requires arbitrary choices during its

4:16 E. Grädel, M. Grohe, B. Pago, and W. Pakusa Vol. 15:1

computation, and although FPC cannot define the solvability of linear equation systems over
finite fields [3], it is known [18] that FPC can indeed express solvability of linear equation
systems over the rationals, see also Subsection 4.5.

Theorem 4.3 [18]. The solvability of linear equation systems over Q is definable in FPC.

Using this result we can express the algorithm from Figure 1 in FPC. In order to
complete our proof of Theorem 4.2 we just need to recall that mon-PCk can refute P if,
and only if, 1 ∈ 〈B〉 = VP . This last assertion, again, reduces to deciding the solvability of a
linear equation system over Q and it can thus, by Theorem 4.3, be defined in FPC.

4.3. Monomial-PC captures Fixed-Point Logic with Counting. Next we show that
the monomial-PC can simulate fixed-point logic with counting. We first observe, however,
that the logic FO(mon-PCk) does not suffice for this purpose. This is due to the fact that
FPC has access to the second (numeric) sort, on which it can perform arbitrary polynomial-
time computations, whereas FO(mon-PCk) is evaluated over standard single sorted input
structures. To overcome this mismatch we have to extend the logic FO(mon-PCk) to
the second-sorted framework as well. We denote this extension of FO(mon-PCk) by
FO+(mon-PCk). As in the case of FPC, this means that formulas are evaluated over
extensions A+ of relational structures A by a numeric sort, as defined in Section 2. In
particular, interpretations for the Lindström quantifiers can make use of the second numeric
sort, and we require this capability in the proof of our following result.

Theorem 4.4. For every k ≥ 2, FPC ≤ FO+(mon-PCk).

An elegant way to prove Theorem 4.4 is to use a game-theoretic characterisation of
FPC which was recently established in [24]. It is based on the notion of so-called threshold
games. A threshold game is a two-player game played on a directed graph G = (V,E) that
is equipped with a threshold function ϑ : V → N. This function satisfies that ϑ(v) ≤ δ(v) + 1
for all v ∈ V , where δ(v) denotes the out-degree of v in G. Moreover, there is a designated
vertex s ∈ V at which each play starts. A play is a sequence of G-nodes that arises
according to the following rules. At the current position v ∈ V , Player 0 first selects a set
X ⊆ vE = {w : (v, w) ∈ E} with |X| ≥ ϑ(v). Then Player 1 chooses a node w ∈ X and the
play moves on to w. A player who cannot move loses. Hence Player 0 wins at all nodes in
T0 := {v ∈ V | ϑ(v) = 0} and Player 1 at all nodes in T1 := {v ∈ V | δ(v) < ϑ(v)}.

In [24] it is shown that threshold games provide appropriate model-checking games
T (A, ϕ) for any finite structure A and any formula ϕ ∈ FPC. Since fixed-point evaluations
on finite structures can be uniformly unraveled to first-order evaluations, we can in fact
assume that the game graphs of these threshold games are acyclic. For any fixed FPC-
formula ϕ, these model checking games are polynomially bounded in the size of the input
structure and can, in fact, be interpreted in (two-sorted) input structures using a first-order
interpretation. This is related to the transformation of FPC-formulas into uniform families
of polynomial-size threshold circuits, as used for instance in [39] and [1].

Theorem 4.5 [24]. For every FPC-formula ϕ there is a first-order interpretation Iϕ which,
for every finite structure A, interprets in A+ an acyclic threshold game G(A, ϕ) such that
A |= ϕ if, and only if, Player 0 has a winning strategy for G(A, ϕ).

It remains to show that the monomial-PC can define winning regions in acyclic threshold
games. Given an acyclic threshold game G = (G = (V,E), ϑ), we construct an axiom system

Vol. 15:1 A FINITE-MODEL-THEORETIC VIEWON PROPOSITIONAL PROOF COMPLEXITY 4:17

P(G) which consists of polynomial equations of degree at most two. For every node v ∈ V
in the threshold game G, the system P(G) contains a variable Xv. Let us denote by W Gσ the
winning region of Player σ in G. Then P(G) satisfies the following:

• if v ∈W G0 , then Xv = 1 is derivable from P(G) in mon-PC2;

• if v ∈W G1 , then Xv = 0 is derivable from P(G) in mon-PC2;
• P(G) is consistent; in particular, either Xv = 1 or Xv = 0 is derivable for every v ∈ V ;

If we can construct such a system P(G) via an FO-interpretation in G, then this completes
our proof of Theorem 4.4. In fact, it then follows that FO+(mon-PC2) can define winning
regions in acyclic threshold games: a node v ∈ V is in the winning region of Player 0 if, and
only if, the system P(G) ∪ {Xv = 0} can be refuted in mon-PC2.

Recall that vE = {w ∈ V : (v, w) ∈ E}, for v ∈ V , denotes the set of successors of v.
Further, we let s(v) denote the number of successors of v, and we let ws(v) denote the
number of successors of v which are in the winning region of Player 0, that is s(v) = |vE|
and ws(v) = |vE ∩W G0 |. We denote the set of non-terminal positions by NonTerm = {v ∈
V : s(v) > 0}. The system P(G) uses the following set of variables:

• a variable Xv, for every v ∈ V ,
• a variable Y m

v for every v ∈ NonTerm, and 0 ≤ m ≤ s(v),
• a variable Zmv [u 7→ j] for every v ∈ NonTerm, 1 ≤ m ≤ s(v), 1 ≤ j ≤ m, u ∈ vE.

The intuition is that the variables Xv encode the winning regions of both players, as described
above. Moreover, the variables Y m

v should indicate whether ws(v) = m, in the following
way: if ws(v) 6= m, then Y m

v = 0 is derivable, and if ws(v) = m, then Y m
v = 1 is derivable.

The variables Zmv [u 7→ j] are auxiliary variables used to encode this last condition, cf. [10].
The system P(G) consists of the following axioms:

(T) For v ∈ T0 : Xv = 1 and for v ∈ T1 : Xv = 0

(C) For v ∈ NonTerm, 1 ≤ m ≤ s(v), u ∈ vE :

m∑
j=1

Zmv [u 7→ j]− Y m
v = 0

For v ∈ NonTerm, 1 ≤ m ≤ s(v), 1 ≤ j ≤ m :
∑
u∈vE

XuZ
m
v [u 7→ j]− Y m

v = 0

For v ∈ NonTerm :
∑
u∈vE

Xu · Y 0
v = 0

(E) For v ∈ V : (1−Xv)−
ϑ(v)−1∑
m=0

Y m
v = 0 and Xv −

s(v)∑
m=ϑ(v)

Y m
v = 0

We also add for each variable X = Xv, v ∈ V , a syntactic dual variable X̄ together with the
axiom

(N) 1−X − X̄ = 0.

These axioms enforce that each dual variable X̄ takes as value 1−X. Note that the system
P(G) only contains axioms of degree at most 2.

Lemma 4.6. The system P(G) is consistent.

Proof. We define an intended model of P(G). For X-variables, we set Xv := 1, if v ∈W G0 ,

and Xv := 0, if v ∈W G1 . For Y -variables, we set Y m
v := 1, if ws(v) = m, and Y m

v := 0 if m 6=
ws(v). For Z-variables, we set Zmv [u 7→ j] := 0 for all non-terminal positions v ∈ V , u ∈ vE,

4:18 E. Grädel, M. Grohe, B. Pago, and W. Pakusa Vol. 15:1

and j ∈ {1, . . . ,m}, if m 6= ws(v). For m = ws(v) > 0, we let vE ∩W G0 = {u1, . . . , um}. We

then set Zmv [ui 7→ j] = 1 if j = i, and Zmv [ui 7→ j] = 0 for j 6= i. Moreover, for u ∈ vE \W G0 ,
we set Zmv [u 7→ 1] = 1, and Zmv [u 7→ j] = 0 for j ∈ {2, . . . ,m}.

Lemma 4.7. If v ∈ W G0 , then we can derive the polynomial Xv − 1 (that is the equation

Xv = 1) from P(G) in mon-PC2; and if v ∈ W G1 , then the polynomial Xv (that is the
equation Xv = 0) can be derived from P(G) in mon-PC2.

Proof. We start with a small remark. Assume that we can derive (1 −X) for a variable
X = Xv, v ∈ V . We show how to derive W (1 − X) for any variable W . This is clearly
possible in the full polynomial calculus: we just have to multiply by W . In the monomial-PC,
however, we cannot multiply (1 −X) by W , since (1 −X) is neither a monomial nor an
axiom. Instead, we use our negation axioms. Starting from 1 − X, we can derive X̄ by
subtracting (N) from 1−X. Since (N) is an axiom, we can multiply it by W ; also, X̄ is a
monomial and so we can multiply it by W . Thus, W (1−X − X̄) +WX̄ = W (1−X) can
be derived, as claimed. We make use of this trick in the following.

Our proof is by induction on the height of the subgame rooted at v ∈ V (recall that G
is acyclic). For terminal positions v ∈ V , the assertion is immediate from axioms (T).

Assume v ∈ V is a non-terminal position. Let W0(v) = vE∩W G0 and W1(v) = vE∩W G1 .
By the induction hypothesis we know that we can derive in mon-PC2 for every u ∈W0(v)
the equation Xu = 1 and for every u ∈W1(v) the equation Xu = 0.

Let m > 0. Consider an equation of the form
∑

u∈vE XuZ
m
v [u 7→ j] − Y m

v = 0 for
j ∈ {1, . . . ,m} of type (C). We have vE = W0(v)] W1(v). For every Z-variable and
for every u ∈ W0(v) we can derive ZXu = Z in mon-PC2, and for every u ∈ W1(v) we
can derive ZXu = 0 in mon-PC2. Hence, we can simplify these equations of type (C) as∑

u∈W0(v) Z
m
v [u 7→ j]− Y m

v = 0 for j ∈ {1, . . . ,m} in mon-PC2.

Next, we consider for every u ∈W0(v) the equations
∑m

j=1 Z
m
v [u 7→ j]− Y m

v = 0, again

of type (C). We combine these two sets of equations as follows:

m∑
j=1

 ∑
u∈W0(v)

Zmv [u 7→ j]− Y m
v

− ∑
u∈W0(v)

 m∑
j=1

Zmv [u 7→ j]− Y m
v

 = 0.

We can further simplify this equation (the variables Zmv [u 7→ j] cancel out) and we get

(m− ws(v))Y m
v = 0.

Hence, for every m > 0, m 6= ws(v), we can derive Y m
v = 0 in mon-PC2. Indeed, also

in the case where m = 0 < ws(v) we can derive Y m
v = 0. In this case we just use the

equation
∑

u∈vE XuY
0
v = 0. Using the same arguments as above, this equation simplifies to

ws(v) · Y 0
v = 0. Hence, if ws(v) > 0, we can also derive Y 0

v = 0. Note that the two equations

of type (E) can be combined to the equation
∑s(v)

m=0 Y
m
v = 1. Hence, altogether we showed

the following. For all 0 ≤ m ≤ s(v) it holds that:

• if m = ws(v), then we can derive Y m
v = 1 in mon-PC2; and

• if m 6= ws(v), then we can derive Y m
v = 0 in mon-PC2.

Having this, the claim follows immediately by using the equations of type (E).

In summary, we have seen that defining the winning regions in acyclic threshold games
is an FPC-complete problem, with respect to FO+-reductions, and that the winning regions
in such games can be defined in FO+(mon-PC2). Furthermore, it is easy to see that the

Vol. 15:1 A FINITE-MODEL-THEORETIC VIEWON PROPOSITIONAL PROOF COMPLEXITY 4:19

system P(G) can be obtained from the game G by means of an FO-interpretation. This
completes the proof of Theorem 4.4 and, together with Theorem 4.2, establishes our first
main theorem of this section.

Theorem 4.8. For every k ≥ 2, FPC = FO+(mon-PCk).

4.4. FPC-Definability of Refutations in the (Full) Polynomial Calculus. Next,
we are going to lift our result concerning the degree-k monomial-PC to the full degree-
k polynomial calculus. As we mentioned before, it seems implausible that proof-search
for PCk can be implemented in FPC, since there are instances where such refutations
necessarily contain polynomials with coefficients of super-polynomial bit-complexity (and
FPC ≤ Ptime). Nevertheless, we will provide an FPC-definable proof search procedure,
similar to the one in the previous section, but it will only be able to deal with coefficients
of restricted size. To this end, we define for each constant b ∈ N, PCk,b as the fragment
of degree-k polynomial calculus over Q where all coefficients are representable as fractions
of binary numbers with at most nb many bits. In a next step, we see that, if we drop the
restriction on the coefficients, we can still define the proof search algorithm in Ck

∞ω.
It follows that the degree-k variants mon-PCk and PCk,b (for each constant b) of the
monomial-PC and the full polynomial calculus have the same expressive power (with respect
to FO+-interpretations), that is for all k ≥ 2 and b ∈ N, we have

FO+(mon-PCk) = FPC = FO+(PCk,b).

Our result provides an interesting new characterisation of the power of the (full) polynomial

calculus from the perspective of finite model theory. In particular, it allows us to use
techniques from finite model theory to answer open questions about the (relative) power of
the two variants of the polynomial calculus. As indicated before, one example is given in
Section 6.3 where we use our new characterisation of the polynomial calculus to answer an
open question posed by Grohe and Berkholz in [10], see Question 6.5 and Theorem 6.6.

To prove the equivalence of FPC and FO+(PCk,b), the first important step is to under-
stand why it is more difficult to express k-dimensional refutations in the (full) polynomial
calculus in FPC rather than in its restricted variant mon-PC. Basically, this comes down
to the following problem: in order to find proofs in the monomial-PC it suffices to decide the
solvability problem for linear equation systems over Q (this is a Boolean decision problem;
the output is either solvable or not solvable). However, in order to search for proofs in the
full PC we need to express the functional problem of computing solution spaces of linear
equation system over Q in FPC. However, while it was known that FPC can define the
(Boolean) solvability problem over Q, it was not known whether solution spaces of linear
equation systems over Q can be expressed in FPC. Luckily, as we show in Theorem 4.12,
this is indeed the case.

Let us now elaborate more on how to find refutations in the full PC. To this end, we recall
the procedure from Figure 1 to find k-dimensional proofs in the monomial-PC. Given a set of
multilinear polynomials P ⊆ QMk of degree at most k, the idea is to construct a set B ⊆ QMk

of (multilinear) polynomials of degree at most k which generate (as Q-linear combinations)
the set of all polynomials MonPCk(P) that can be derived in the k-dimensional mon-PC
(starting from the given set of polynomials P). At the beginning, B is set to contain all
(linearised and) lifted versions MultLin(m · p) of the given polynomials p ∈ P up to degree k.
Subsequently, the set B is closed under liftings by variables X. More precisely, in each

4:20 E. Grädel, M. Grohe, B. Pago, and W. Pakusa Vol. 15:1

iteration, the set B is extended by all possible (linearised) liftings X ·m of monomials m
of degree at most k − 1 that can be derived up to this stage, i.e. for which m ∈ 〈B〉 holds
(here, 〈B〉 denotes the set of all polynomials that can be derived from polynomials in B using
Q-linear combinations). The crucial observation is that this simple inductive lifting step
is sufficient for the monomial-PC, because, indeed, by its rules we are only allowed to lift
monomials and the initial polynomials p ∈ P. The set B is extended in this way until 〈B〉
remains stable.

In order to adapt this algorithm to the (full) PC, we need to make the following changes.
Most importantly, instead of lifting all monomials m ∈ 〈B〉, deg(m) < k, during the iteration,
for the full PC we have to take all (multilinear) polynomials p ∈ 〈B〉, deg(p) < k into
account, and make sure that their liftings X · p are contained in 〈B〉. This is more difficult
for the following two reasons. First of all, we cannot go through all such polynomials p,
simply because their number is exponential in the number of variables. To overcome this
obstacle, we have to use linear-algebraic preprocessing which enables us to lift a generating
set for the set of polynomials p ∈ 〈B〉,deg(p) < k, instead. Note that this was not necessary
in the setting of the monomial-PC: here, the number of possible k-dimensional monomials
is bounded polynomially in the number of variables (for fixed k ≥ 2). There is a second
problem. During the iteration, for the monomial-PC we could repeatedly add all lifted
variants X ·m of all monomials m ∈ 〈B〉,deg(m) < k to our partial generating set 〈B〉. This
is because the (linearised) version of a lifted monomial remains a monomial and we just
said that the number of all k-dimensional monomials is polynomially bounded. Hence, we
never obtain generating sets B of super-polynomial size in this way. In contrast, for the
setting of the (full) PC, assume that at some stage during the iteration we have a small
generating set C for the set of all polynomials p ∈ 〈B〉 of degree at most k − 1. If we now
lift all polynomials p ∈ C in all possible ways X · p, then clearly the size of the resulting
set C′ increases by a factor which corresponds to the number of variables (and there is no
global polynomial upper bound for C′ as in the case of the monomial-PC). Hence, before
each lifting step, we have to ensure that the size of the generating set C of polynomials
that we lift is (globally) bounded by a polynomial. We can invoke standard linear-algebraic
algorithms to achieve this. More specifically, we construct C in such a way that its size
does not exceed |Mk|, that is the number of different multilinear monomials of degree at
most k. Note that a generating set of this size exists, since each Q-linear subspace of QMk is
of dimension at most |Mk|. Moreover, as we mentioned before, |Mk| is of polynomial size for
any fixed k. We summarise the adapted algorithm for finding k-dimensional refutations in
the (full) polynomial calculus in Figure 2.

To see how we can implement the algorithm from Figure 2 in polynomial time, let us
have a closer look at the construction of the set C during the iteration. First of all note
that the set {p ∈ 〈B〉 : deg(p) < k} is indeed a Q-linear subspace of 〈B〉 which, in turn, is a
Q-linear subspace of QMk . Hence, it is clear that a generating set C of size at most |Mk|
exists. Moreover, we can easily obtain C as the solution space of a linear equation system.
Indeed, let M be the Mk × B-matrix over Q whose columns correspond to the polynomials
in B. Then im(M) = 〈B〉. Hence, if we let x and p denote a B-vector and an Mk-vector of
variables ranging over Q, respectively, then the solution space of the linear equation system
determined by the equation Mx = p is 〈B〉 when we project it to the variables p. Hence, by
adding extra constraints p(m) = 0 for all monomials m ∈Mk with deg(m) = k, we obtain a
linear equation system whose solution space, projected to variables in p, is a generating set

Vol. 15:1 A FINITE-MODEL-THEORETIC VIEWON PROPOSITIONAL PROOF COMPLEXITY 4:21

Input: Set of multilinear polynomials P ⊆ QMk

Output: B ⊆ QMk such that 〈B〉 = PCk(P).
B := {MultLin(m · p) | p ∈ P,m a monomial such that deg(MultLin(m · p)) ≤ k}

// Initialisation (lift all axioms in P)
repeat

Construct set C ⊆ QMk of size at most |Mk| such that 〈C〉 = {p ∈ 〈B〉 : deg(p) < k}
for all polynomials p ∈ C do
B := B ∪ {MultLin(X · p) : for some variable X}

end for
until 〈B〉 remains unchanged
return B

Figure 2: FPC-procedure to construct generating set B for the set PCk(P) of all polynomials
that can be derived in PCk starting from the given set of polynomials P

for {p ∈ 〈B〉 : deg(p) < k}. Clearly, solution spaces for such systems can be computed in
polynomial time.

Before we discuss the FPC-definability of this procedure, let us observe that there is a
small caveat with the approach above. So far, the generating set for {p ∈ 〈B〉 : deg(p) < k}
that we obtain is not of size at most |Mk|. Indeed, by our construction, which relies
on the final projection step, the size of the generating set depends on |B| (because the
vector of variables x is indexed by B). Hence, we need to make a second important
observation. Say we were able to construct an Mk × J-matrix N over Q with the property
that im(N) = {p ∈ 〈B〉 : deg(p) < k} (that is the columns of N form a generating set for
the solution space of the above linear equation system projected to p). We would like to

transform this matrix N into a “smaller” Mk ×Mk-matrix N̂ such that im(N̂) = im(N).
This is clearly possible simply because the dimension of the space im(N) is at most |Mk|.
However, the question is about how difficult it is to obtain such a “more compact” version
N̂ of N . Specifically, for our FPC-definability proof, we need to express this “compression
transformation” in FPC as well.

Fortunately, the step from N to N̂ is surprisingly easy to realise. As we will see in the
following subsection, it holds that the (Mk×Mk)-matrix N̂ := N ·NT has the same image as
the matrix N , see Lemma 4.14. Hence, we obtain a small generating set for im(N) by taking

the columns of N̂ = N ·NT . This shows that we can, in general, quite easily transform an
arbitrary generating set for a Q-linear subspace of QMk into a small generating set of size at
most |Mk|. Moreover, this transformation only relies on simple matrix operations, such as
transposition and matrix multiplication. As such operations are well-known to be definable
in FPC, see e.g. [32], this transformation is FPC-definable. However, it is at this point that

the bit-complexity of the coefficients has to be taken into account. Since N̂ is computed by
squaring N , the bit-complexity of the coefficients can increase in this step. If this happens
repeatedly, then the required number of bits may become greater than the maximum number
of bits that our FPC-sentence can handle. In this case, the computation has to be aborted.
This maximum number of bits depends on the number of variables of the FPC-sentence that
we are constructing: We want our sentence to be able to find refutations in PCk,b, for a fixed
value of b. That is, the coefficients occurring in a refutation can be written as fractions of
binary numbers of length ≤ nb, where n is the size of the input structure. These coefficients,

4:22 E. Grädel, M. Grohe, B. Pago, and W. Pakusa Vol. 15:1

i.e. the entries of the matrices that we are manipulating in the fixed-point computation, are
represented as follows: We use a tuple of b variables ranging over the n ordered elements of
the number sort in order to index the positions of a binary string. Relations are used to
mark the positions that are 0 and 1, respectively, and to specify the position of the coefficient
in the matrix (see [32] for more details). Therefore, it is possible to construct for every fixed
b an FPC-sentence that performs the matrix manipulations mentioned above using binary
numbers of length nb, but no fixed FPC-sentence can deal with coefficients of unbounded
length.

Altogether, this means that the only difficulty we face is to define solution spaces of
linear equation system over Q in FPC. Recall that by the result of Dawar, Grohe, Holm, and
Laubner we know that FPC can express the Boolean solvability problem of linear equation
systems over Q, see Theorem 4.3. However, this does not give direct evidence for FPC
being able to express the more general functional problem of defining solution spaces over Q.
For the sake of illustration, consider rank logic over finite fields. Rank logic can define the
Boolean solvability problem for linear equation systems over finite fields but it is not to be
expected that it can also define vectors in the solution space: This is because any solution
vector to a linear equation system obtained from CFI-graphs has an orbit of exponential
size, and rank logic is isomorphism-invariant and in Ptime.
Luckily, over Q, the situation turns out to be different. Not only can we define the Boolean
solvability problem in FPC but we can also define the corresponding solution spaces as we
show in this article (see Theorem 4.12). From this result and our preceding discussion it
easily follows that the algorithm in Figure 2 (with bounded bit-complexity) is definable in
FPC. Beyond this application, we believe that Theorem 4.12 is interesting in its own right
and might prove useful in other contexts. Let us conclude by stating our main result of this
subsection (where we rely on the yet to be proven Theorem 4.12).

Theorem 4.9. For every k ≥ 2 and b ∈ N, there exists an FPC-sentence ϕ with O(k + b)
many variables such that given (a structural encoding of) a system P of polynomials over Q
as input for the k-dimensional polynomial calculus of degree k, ϕ expresses whether P can
be refuted in PCk,b, that is ϕ defines whether 1 ∈ PCk,b(P).

A more commonly studied version of the polynomial calculus is PCk, that is, the degree-k
PC over Q without any restriction on the bit-complexity. The procedure we described above
in principle also works for the PCk. It would be FPC-definable, even without a bound on
the bit-complexity, if FPC-sentences were evaluated in structures with larger number sorts.
Recall that we use the elements of the number sort to index the positions of the binary
strings. In FPC, the number sort always has the same size n as the structure itself, but if
we imagine the number sort to be of some size f(n), for a sufficiently large function f , then
our sentence can deal with f(n)b many bits instead of nb. Our algorithm involves squaring
a matrix polynomially many times. Hence, if f(n) is greater than the largest possible
growth of the bit-length that can occur in this number of squaring operations, then the
procedure could be implemented in FPC with number sorts of size f(n) and it would always
correctly decide the existence of PCk-refutations, regardless of any bit-complexity issues. A
fixed-point logic with such big number sorts does not really exist but instead, we can use
Ck
∞ω. The standard translation of FPC-sentences into Cω

∞ω-sentences does not increase the
number of variables. It simulates the number-sort-variables of the FPC-sentence with large
disjunctions or conjunctions over all elements of the number sort. This idea works regardless

Vol. 15:1 A FINITE-MODEL-THEORETIC VIEWON PROPOSITIONAL PROOF COMPLEXITY 4:23

of the size of the number sort. These considerations directly lead to the following result for
the degree-k polynomial calculus:

Theorem 4.10. For every k ≥ 2, there exists a Cω
∞ω-sentence ϕ with O(k) many variables

such that given (a structural encoding of) a system P of polynomials over Q as input for
the k-dimensional polynomial calculus of degree k, ϕ expresses whether P can be refuted in
PCk, that is ϕ defines whether 1 ∈ PCk(P).

Theorem 4.11. For all k ≥ 2, b ∈ N:

FO+(mon-PCk) = FO+(PCk,b) = FPC
?
< FO+(PCk) < CO(k)

∞ω .

By FPC
?
< FO+(PCk), we mean that we do not know whether or not FO+(PCk) ≤

FPC holds. However, there are some reasons why we suspect that FPC is strictly weaker
than FO+(PCk). First of all, to the best of our knowledge, it is an open problem whether
or not there exists a PTIME-algorithm that decides the existence of PCk-refutations (for
unbounded coefficients). The well-known Groebner basis algorithm certainly fails [31], so
if this problem is in P, then there must be some way to avoid explicit computation of the
coefficients in the refutation. Since FPC ≤ Ptime, it is “even more open” if the problem is
in FPC.
Secondly, our result FO+(PCk,b) = FPC has the following consequence: If it were possible
to compute PCk-refutations with arbitrarily large coefficients in FPC, then there would
be a numeric FO-interpretation that reduces any input polynomial equation system to one
that can be decided in PCk,b, that is, with small degree and small coefficients. This seems
to be a very strong statement because it means that the necessity to use large coefficients
in refutations can be circumvented with simple FO-definable preprocessing of the input
polynomials. This would be quite surprising, so it seems more reasonable to believe that
FPC � FO+(PCk).

4.5. Definability of Solution Spaces of Linear Equation Systems over Q. To com-
plete our proof of Theorem 4.9, we proceed to show that FPC can define solution spaces of
linear equation systems over Q. Formally, our main result in this subsection reads as follows.

Theorem 4.12. There exist FPC-formulas which define the following: given (a structural
encoding of) a linear equation system M · x = b over Q, for M : I × J → Q and b : I → Q,
they express whether M · x = b is solvable, and in this case, define (structural encodings of)
a matrix S : J × J → Q and a vector c : J → Q such that im(S) = ker(M) and M · c = b,
i.e. such that im(S) + c is the solution space of M · x = b.

In order to prove Theorem 4.12, we make use of the following linear-algebraic properties
of matrices over the rationals. For completeness, and since it is central for our application,
we present short proofs to recall the underlying algebraic arguments. From now on, let us
fix a linear equation system M · x = b with M : I × J → Q and b : I → Q. The key is to
consider the following matrices over Q:

B := M ·MT ∈ QI×I

C := MT ·M ∈ QJ×J .

In Figure 3 on the next page we summarise what we are going to show.

4:24 E. Grädel, M. Grohe, B. Pago, and W. Pakusa Vol. 15:1

QJ

=

ker(M)

⊕

im(MT)

=

=

ker(C)

im(C)

⊕

QI

=

ker(MT)

⊕

im(M)

=

=

ker(B)

im(B)

⊕∼=

∼=

M

MT∼= ∼=C B

Figure 3: Linear-algebraic structure induced by the matrix M : I × J → Q where B =
M ·MT : I × I → Q and C = MT ·M : J × J → Q

Lemma 4.13 (Properties of B,C).

(1) BT = B and CT = C, that is B and C are symmetric.
(2) ker(B) = ker(Bi) and ker(C) = ker(Ci) for all i ≥ 1.
(3) im(B) = im(Bi) and im(C) = im(Ci) for all i ≥ 1.
(4) QI = ker(B)⊕ im(B) and QJ = ker(C)⊕ im(C).
(5) B is an automorphism of im(B) and C is an automorphism of im(C).

Proof. The arguments for B and C are completely symmetric, so let us consider the case
of B : I × I → Q. First of all, BT = (M ·MT)T = M ·MT = B. For the second claim, we
proceed by induction on i. It is clear that ker(B) ⊆ ker(Bi) for all i ≥ 1, so it suffices to
show ker(Bi) ⊆ ker(B). For i = 1, the claim is trivial, so assume that i ≥ 2 and for some
x ∈ QI we have Bix = 0. Then also Bi−1 · Bi−1x = 0. Since BT = B, this means that
also xT · (Bi−1)T ·Bi−1x = 0. Hence, |Bi−1x|2 = 0, which implies that Bi−1x = 0. We get
x ∈ ker(Bi−1) and by the induction hypothesis x ∈ ker(B).

Let’s consider (3). Again, it is easy to see that im(Bi) ⊆ im(B) for all i ≥ 1. Now let’s
choose a basis Be1, . . . , Be` for im(B) and let i ≥ 2. Then Bie1, . . . , B

ie` is a generating
set for im(Bi). We claim that Bie1, . . . , B

ie` is a basis for im(Bi) which would prove our
claim. Indeed, assume that for some non-zero (aj) ∈ Q` we had

∑
j aj · Biej = 0. Since

ker(Bi) = ker(B) it follows that
∑

j ajBej = 0, a contradiction. We turn our attention

to (4). We have to show two things, namely that every vector in QI can be written as a
linear combination of elements in ker(B) and im(B) and that this expression is unique. Let
us start with the latter claim. Assume that Bx+ y = 0 for x, y ∈ QI , y ∈ ker(B). We have
to show that Bx = y = 0. From Bx+ y = 0 we can conclude that B2x = 0 since By = 0.
Since ker(B2) = ker(B) it follows that Bx = 0 which yields y = 0. To complete the proof,
let x ∈ QI . Consider the cyclic space generated by B, that is 〈{x,Bx,B2x, · · · , Bnx}〉
where n = |I|. Note that {x,Bx,B2x, · · · , Bnx} is linearly dependent. If x ∈ im(B), then
there is nothing to show. Otherwise, we know that x 6∈ 〈{Bx,B2x, · · · , Bnx}〉. We choose
a non-zero vector (aj) ∈ Qn such that

∑n
j=1 ajB

jx = 0. Let k ≥ 1 be minimal such that

ak 6= 0. Then Bk(akx+
∑n

j=k+1 ajB
j−kx) = 0, hence akx+ z ∈ ker(Bk) = ker(B) for some

z ∈ im(B). This is what we wanted to show. Finally, (5) follows from (3).

Lemma 4.14 (Relating B,C and M,MT).

(1) ker(B) = ker(MT) and ker(C) = ker(M).

Vol. 15:1 A FINITE-MODEL-THEORETIC VIEWON PROPOSITIONAL PROOF COMPLEXITY 4:25

(2) im(B) = im(M) and im(C) = im(MT).
(3) M is an isomorphism from im(MT) to im(M) and MT an isomorphism from im(M)

to im(MT). In particular, rk(C) = rk(MT) = rk(M) = rk(B).

Proof. Again, as the arguments are symmetric, we only consider the case of B. For (1),
note that ker(MT) ⊆ ker(M ·MT) = ker(B) for trivial reasons. Moreover, if M ·MTx = 0
for some x ∈ QI , then also xTMMTx = 0, that is |MTx|2 = 0 which implies MTx = 0.
Hence, ker(B) ⊆ ker(MT). For (2), note that im(B) = im(M · MT) ⊆ im(M), again
for trivial reasons. To verify the other direction, let x ∈ QJ and consider the element
Mx ∈ im(M). By Lemma 4.13, we can write Mx as Mx = By + z for some y, z ∈ QI and
z ∈ ker(B) = ker(MT). Hence MTMx = (MTM)MT y, that is Cx = CMT y. From this
we get that C(x −MT y) = 0. Using ker(C) = ker(M), we get M(x −MT y) = 0. This
implies that Mx = MMT y = By which proves our claim. Finally, (3) follows immediately
from (1),(2) and Lemma 4.13.

We are ready to establish the following central criterion for the solvability of linear
equation systems over Q.

Lemma 4.15 (Solvability of linear equation system, see also [30]). Let M · x = b be a linear
equation system over Q where with M : I ×J → Q and b : I → Q. Let B = M ·MT as above.
Let n = min{|I|, |J |}. Then the linear equation system M · x = b is solvable if, and only if,
b can be written as a Q-linear combination of vectors in Γ = {Bb,B2b, . . . , Bn+1b}, that is
if b ∈ 〈Γ〉.

Proof. First, note that 〈Γ〉 ⊆ im(B). Hence, if b ∈ 〈Γ〉, then clearly the linear equation
system M ·x = b is solvable. For the other direction, assume that b ∈ im(M) = im(B). Then
for some c ∈ QI we have Bc = b. Let ∆ = {Bc,B2c, . . . , Bn+1c} = {b, Bb, . . . , Bnb}. This
set ∆ is linearly dependent, because it is a subset of im(B) and we have established before
that the dimension of im(B) coincides with rk(M) which is at most n = min{|I|, |J |}. It
easily follows that 〈∆〉 is B-invariant, that is 〈B∆〉 ⊆ 〈∆〉. Moreover, by Lemma 4.13, B is
an automorphism of im(B) which implies that 〈B∆〉 = 〈∆〉. However, this shows that b ∈ ∆
can be written as a linear combination of elements in B∆ = Γ which proves our claim.

Using Lemma 4.15, it is easy to show that FPC can define the solvability problem for
linear equation systems over Q.

Proof of Theorem 4.12 - Part 1/2. Given a linear equation system M · x = b over Q for
M : I × J → Q and b : I → Q, we first define B = MMT as above and the ordered set of
vectors Γ = {Bb, . . . , Bn+1} as in Lemma 4.15. This can be done in FPC, since matrix
multiplication over Q is well-known to be definable in FPC, see e.g. [32].

Since Γ is an ordered set we can use the Immerman-Vardi Theorem to define the problem
b ∈ 〈Γ〉 in FPC. More precisely, let N be the I × {1, . . . , n+ 1}-matrix over Q whose i-th
column is the vector Bib : I → Q. Then b ∈ 〈Γ〉 if, and only if, N · x = b is solvable. Note

that N can be written as N = B · N̂ where N̂ is the I × {1, . . . , n+ 1} matrix whose i-th
column is Bi−1b. Moreover, since B = M ·MT , we have transformed our original system
M · x = b into the system M · (MT · N̂) · x = b which is solvable if, and only if, M · x = b

is solvable. Furthermore, a solution c : {1, . . . , n+ 1} → Q for M · (MT · N̂) · x = b readily

defines the solution (MT · N̂ · c) : J → Q for M · x = b
To solve the system N · x = b in FPC, first note that N has an ordered set of columns.

However, the set of rows I is not ordered. To obtain an ordered linear equation system, we

4:26 E. Grädel, M. Grohe, B. Pago, and W. Pakusa Vol. 15:1

can consider the lexicographical ordering on the set of rows of N induced by the linear order
on the set of columns and on Q. This results in a linear preorder which merges columns that
are identical (such columns correspond to repeated linear equations). By merging identical
columns we obtain a fully ordered system. By the Immerman-Vardi Theorem such systems
can be solved in FPC.

We are left with the second claim of Theorem 4.12, namely that, given M · x = b with
M : I ×J → Q and b : I → Q, we can define in FPC a matrix S : J ×J → Q whose columns
form a generating set for ker(M), that is im(S) = ker(M). For this we make use of the
structure induced by the linear transformation C = MTM : J × J → Q on QJ .

Proof of Theorem 4.12 - Part 2/2. We established in Lemma 4.13 that QJ = ker(C)⊕im(C)
and in Lemma 4.14 that ker(M) = ker(C). Hence, we can equivalently define a generating set
for ker(C) in FPC. Let us denote by ej the j-th standard basis vector on QJ . We can clearly
define the vector ej : J → Q in FPC using j ∈ J as a parameter. Since QJ = ker(C)⊕ im(C)
we can write each ej uniquely as ej = kj + cj for kj ∈ ker(C) and cj ∈ im(C). It is easy to
see that the set {kj : j ∈ J} forms a generating set for ker(C). Hence, our aim is to define
this set in FPC.

To obtain the projections kj of ej onto ker(C), we make use of the fact that FPC can
solve linear equation systems over Q and define single solutions. Indeed, kj is the unique
vector kj ∈ QJ such that ej = kj + cj and Ckj = 0 and Cz = cj for some cj , z ∈ QJ (where
we treat kj , z, cj here as J-vectors of variables ranging over Q). Since in each solution of
this system the projection onto kj is unique, we can define kj in FPC as we saw before.
Note that in order to define these linear equation systems we use j ∈ J as a parameter, so
we really solve |J |-many linear equation systems in parallel. Given the vectors kj : J → Q,
we can define the matrix S : J × J → Q as the matrix whose j-th column is the vector kj .
Then im(S) = ker(C) = ker(M). This completes our proof of Theorem 4.12.

Remark 4.16. In fact, by going through our proof once again, one can show that Theo-
rem 4.12 can be strengthened to the extent that the FPC-formulas only use fixed-point
operators that converge after a polylogarithmic number of steps, cf. [30].

5. Definability of Polynomial Calculus Refutations over Finite Fields

In Section 4 we proved that fixed-point logic with counting and the (k-dimensional) polyno-
mial calculus over Q have the same expressive power if we restrict the coefficients that may
occur in a refutation. In this section we study the polynomial calculus not over Q, but over
finite fields. That means we do not need to worry about the representation of coefficients
any more. Yet, we cannot hope to express the degree-k PC over finite fields in fixed-point
logic with counting in the general case: It is easy to show that the problem of solving linear
equation systems over a field F can be reduced (in first-order logic) to finding proofs in the
(k-dimensional) PC over F. However, FPC cannot define the solvability problem for linear
equation systems over finite fields F, see [3].

Instead of giving up completely, we set out to explore certain (interesting) situations
in which we can establish the same strong connections between FPC and the polynomial
calculus that we discovered over Q also over finite fields. To identify these, we take a closer
look at typical settings where the connection breaks down, that is where we encounter
linear equation systems over finite fields that cannot be solved by FPC. To generate such

Vol. 15:1 A FINITE-MODEL-THEORETIC VIEWON PROPOSITIONAL PROOF COMPLEXITY 4:27

hard linear equation systems, a common approach is to use the Cai-Fürer-Immerman (CFI)
construction [13]. Specifically, the CFI-construction yields for every prime p ∈ P a family
of structures (Apn)n≥1 of size O(n) such that the solvability problem for linear equation
systems over finite fields F of characteristic p that are defined in CFI-structures Apn (via
FO-interpretations) cannot be expressed in FPC. Clearly, over these families of Cai-Fürer-
Immerman-structures (Apn)n≥1 there is no hope to express PCk-proofs in FPC over fields F
of characteristic p.

However, what happens if we consider the following slightly more asymmetric situation.
As before, we consider equation systems over a finite field F that are interpreted in CFI-
structures Apn. But, in contrast to the above, we make the additional assumption that the
characteristic q = char(F) of the finite field F does not match the prime p that was used
for the Cai-Fürer-Immerman-construction, that is we assume that q 6= p. In this case, as
we show in our main result of this section (Theorem 5.25), we can express PCk-refutations
in fixed-point logic with counting. Although this result only gives limited insight into the
logical expressiveness of the polynomial calculus over finite fields, it turns out to be extremely
useful to prove lower bounds for the polynomial calculus, as we demonstrate in Section 6.

This section is structured as follows. First of all, we recall (a generalised version of)
the Cai-Fürer-Immerman construction in Subsection 5.1 and we analyse automorphism
groups of Cai-Fürer-Immerman-structures in Subsection 5.2. To unfold its full power, the
Cai-Fürer-Immerman-construction relies on an underlying family of highly connected graphs
of bounded degree. To this end, we recall the notion of expander graphs in Subsection 5.3.
We prove our first main technical result in Subsection 5.4 where we show that Cai-Fürer-
Immerman-structures over expander graphs are homogeneous wrt. FPC, which means that
FPC can describe elements (and tuples of elements) in Cai-Fürer-Immerman-structures
up to automorphisms. An important consequence is that FPC can linearly order orbits of
elements (and tuples of elements) with a bounded number of variables. In Subsection 5.5
we establish another important property of Cai-Fürer-Immerman-structures which extends
homogeneity: we show that Cai-Fürer-Immerman-structures are cyclic (wrt. to FPC) which
means that FPC can linearly order orbits of elements (and tuples of elements) by fixing
a single parameter in this orbit. We also show that this property is closed under taking
FPC-interpretations and ordered pairs. Building on this, we establish our key technical
result in Subsection 5.6: we show that FPC can define solution spaces of linear equation
systems over finite fields F that are interpreted in cyclic background structures with the
additional assumption that the characteristic of the field F does not divide the size of the
(Abelian) automorphism group of the cyclic structure (we say that such linear equation
systems are cocyclic). Finally, in Subsection 5.7 we use this result in order to prove our main
Theorem 5.25: FPC can express k-dimensional PC-refutations for polynomial equation
systems that are defined in cyclic structures over finite fields F if this same condition on the
characteristic for F holds.

5.1. Cai-Fürer-Immerman Construction. For notational convenience, we introduce the
Cai-Fürer-Immerman-construction only for connected (undirected) graphs G which are
3-regular and ordered. The assumption that G is ordered means that additional to the set of
vertices V = V (G) and the (symmetric) edge relation E = E(G) ⊆ V (G)× V (G) we assume
that G contains a linear order ≤=≤(G) on its set of vertices V . In fact, this is the original
setting as it was introduced by Cai, Fürer, and Immerman in [13].

4:28 E. Grädel, M. Grohe, B. Pago, and W. Pakusa Vol. 15:1

Let p ∈ P be a prime. For every vector λ ∈ FVp we construct the CFI-structure
CFI [G; p;λ] over the (connected and ordered) graph G, the finite field Fp, and with load λ
as the following relational structure with signature τCFI = {�, R, C, I} where R is a ternary
relation symbol and where �, I, C are binary relation symbols. The universe A of the
CFI-structure A = CFI [G; p;λ] is A = E(G)× Fp. The linear order ≤(G) on the vertex set
V (G) of G extends to a linear order on the edge set E(G). We use this linear order on
E(G) to define the following total preorder � on A: (e, x) � (f, y) if e ≤ f . Note that �
induces a linear order on the corresponding equivalence classes ep = e× Fp. Clearly, each of
these classes ep is of size p. Since G is undirected every edge e = (v, w) ∈ E comes with its
corresponding dual edge f = (w, v) ∈ E. In what follows, we use the notation e−1 = f to
denote the dual of the edge e ∈ E. The relations I and C are defined follows.

• The cycle relation C defines the cyclic structure of the additive group of Fp on each of
the equivalence classes ep. More precisely,

C =
⋃
e∈E
{((e, x), (e, x+ 1 mod p)) : x ∈ Fp}.

• The inverse relation I relates additive inverses for dual edges. Formally,

I =
⋃
e∈E
{((e, x), (e−1,−x) : x ∈ Fp}.

Note that while the cycle relation C defines a directed cycle, the inverse relation I is
symmetric. Furthermore, observe that the relations �, C and I are defined independently of
the load vector λ and so do only depend on the underlying graph G and the prime field Fp.
In contrast, the CFI-relation R = Rλ is defined using the load vector λ as follows. For each
v ∈ V , we let vE ⊆ V denote the set of neighbours of v in G, that is E(v) = {v} × vE ⊆ E
is the set of edges outgoing from v. Since G is 3-regular we have that |vE| = 3 for each
v ∈ V . For v ∈ V let E(v) = {w1, w2, w3} where w1 < w2 < w3. The CFI-relation Rλ(v) at
vertex v is defined as follows:

Rλ(v) = {((w1, x1), (w2, x2), (w3, x3)) : x1 + x2 + x3 = λ(v)}.

The full CFI-relation Rλ of the structure CFI [G; p;λ] is given as Rλ =
⋃
v∈V R

λ(v).

5.2. Symmetries of Cai-Fürer-Immerman-Structures. It turns out that the automor-
phism group Γ of a CFI-structure CFI [G; p;λ] only depends on G and p, but not on λ. To
see this, first observe that every automorphism π ∈ Γ has to maintain the linear preorder �
which means that π(ep) = ep for all e ∈ E. Moreover, π has to maintain the cycle relation C.
This means that the action of π on an edge class ep is a cyclic shift in Fp. Let us write
π(e) ∈ Fp to denote this cyclic shift of π on ep for e ∈ E. Then, because of the inverse
relation I, we have π(e) + π(e−1) = 0. Altogether this shows that

Γ ≤ {π ∈ FEp : π(e) + π(e−1) = 0 for e ∈ E} ≤ FEp .

However, so far we have not taken the CFI-relation Rλ into account. Again, because of the
linear preorder �, for each π ∈ Γ we have π(Rλ(v)) = Rλ(v) for all v ∈ V . Let v ∈ V and
vE = {w1, w2, w3} and let ((w1, x1), (w2, x2), (w3, x3)) ∈ Rλ(v), that is x1 + x2 + x3 = λ(v).
From our earlier observations we know that

π((wi, xi)) = (wi, xi + π(v, wi)).

Vol. 15:1 A FINITE-MODEL-THEORETIC VIEWON PROPOSITIONAL PROOF COMPLEXITY 4:29

Hence, the condition π(Rλ(v)) = Rλ(v) implies that

x1 + π(v, w1) + x2 + π(v, w2) + x3 + π(v, w3) = λ(v).

This implies that π(v, w1) + π(v, w2) + π(v, w3) =
∑

e∈E(v) π(e) = 0. In fact, this condition

is not only necessary but also sufficient for π to preserve Rλ(v). Moreover, note that all
of this holds independent of what λ is. Altogether this gives us a characterisation of the
automorphism group Γ of CFI [G; p;λ] as a subgroup of the vector space FEp that is determined
by the following set of linear equations in variables π(e) for e ∈ E:

π(e) + π(e−1) = 0 for e ∈ E (Inv)

π(v) :=
∑

e∈E(v)

π(e) = 0 for v ∈ V. (CFI)

More generally, we can apply each vector π ∈ FEp , that satisfies the constraints (Inv), to a
CFI-structure CFI [G; p;λ] and obtain a new CFI-structure over the same underlying graph G.
As it turns out the resulting structure is CFI [G; p;λ + π] where (λ + π)(v) = λ(v) + π(v)
for all v ∈ V . Let us denote by Inv(FEp) ≤ FEp the set of all vectors π that satisfy the
(Inv)-constraints.

Remark 5.1. For every G = (V,E,≤) (connected, ordered, 3-regular) and each prime
p ∈ P, the group ∆ = Inv(FEp) ≤ FEp acts on the set of CFI-structures over G that is on

CFI [G; p; ?] = {CFI [G; p;λ] : λ ∈ FVp }, and this action partitions the set into precisely p
orbits (see below).

Clearly, the set CFI [G; p; ?] has size pn where n = |V (G)|. However, if we consider this
set up to isomorphism, there are only p different Cai-Fürer-Immerman-structures over a
fixed graph G:

Theorem 5.2 [13, 32, 40]. Two CFI-structures CFI [G; p;λ],CFI [G; p;σ] ∈ CFI [G; p; ?] are
isomorphic if, and only if, ∑

λ =
∑
v∈V

λ(v) =
∑
v∈V

σ(v) =
∑

σ.

Let us remark that, for technical convenience, we have introduced CFI-structures as
relational structures. However, it is easy to encode them as usual (unordered) graphs, and,
in fact, this is the way in which they were originally defined in [13]. The main step is to

introduce for each CFI-constraint i = ((e1, x1), (e2, x2), (e3, x3)) ∈ Rλ(v), ei ∈ E(v), xi ∈ Fp,
a new node iλ(v) and to connect it to the edge nodes (ei, xi) ∈ E(v)× Fp accordingly (these

additional constraint nodes iλ(v) are called inner nodes in the original construction of Cai,
Fürer, and Immerman). Furthermore, we can replace the linear preorder by a path of
the appropriate length and connect vertices in the edge classes to positions on this path
accordingly. All of these simple transformation steps are clearly definable in FPC.

Lemma 5.3. There exist FPC-interpretations J and J −1 such that J maps CFI-structures
A = CFI [G; p;λ] ∈ CFI [F ; p] to graphs J (A) of degree O(p2) and with O(p2 ·n) many vertices,
where n = |V (G)|, and such that J −1, which maps graphs to CFI-structures, is the inverse
of J in the sense that for all A ∈ CFI [G; p;λ] we have that J −1(J (A)) is isomorphic to A,
that is J −1(J (A)) ∼= A.

4:30 E. Grädel, M. Grohe, B. Pago, and W. Pakusa Vol. 15:1

5.3. Expander Graphs and CFI-Classes. Let us briefly recall the definition of expander
graphs based on the exposition in [33]. In the following G = (V,E) denotes an undirected
d-regular graph (in this paper we only consider the case d = 3). For two subsets of vertices
S, T ⊆ V in G we denote the set of (directed) edges from S to T by E[S;T] = E ∩ (S × T).
The edge boundary of a set S ⊆ V is ∂S = E[S;V \ S] and the expansion ratio h(G) is
defined as:

h(G) = min
{S:|S|≤|V |/2}

|∂S|
|S|

.

Definition 5.4 (Expander graphs). A sequence F = {Gn : n ∈ N} of undirected d-regular
graphs is called a family of d-regular expander graphs if

• F is increasing, that is |V (Gn)| is monotone and unbounded, and
• F is expanding, that is there exists ε > 0 such that h(Gn) ≥ ε for all n ∈ N.

For our applications in this paper we make use of the existence of a family of 3-regular
connected expander graphs.

Theorem 5.5 (see e.g. Example 2.2 in [33]). There exists a family of 3-regular expander
graphs F = {Gn : n ∈ N} such that each graph Gn, n ∈ N, is connected and has O(n)
vertices.

For the rest of this paper let us fix a family F = {Gn : n ∈ N} of expander graphs as in
the previous theorem. Of course, we can also assume that the graphs in F are ordered just
by adding to each graph Gn ∈ F an arbitrary linear order on V (Gn). From this family F of
3-regular, connected, ordered expander graphs Gn with O(n) many vertices we construct,
for every p ∈ P, the CFI-class CFI [F ; p] consisting of all CFI-structures over graphs from F
that is

CFI [F ; p] =
⋃
n∈N

CFI [Gn; p; ?].

The CFI-problem (over F and p ∈ P) is to decide, given a structure CFI [G; p;λ] ∈ CFI [F ; p]
whether

∑
λ = 0. It was shown by Cai, Fürer, and Immerman that this problem is

undefinable in counting logic with sublinearly many variables.

Theorem 5.6 [13]. For CFI [Gn; p;λ],CFI [Gn; p;σ] ∈ CFI [F ; p] we have

CFI [Gn; p;λ] ≡Ω(n) CFI [Gn; p;σ].

5.4. Homogeneity of Cai-Fürer-Immerman-Structures. In this section we establish
a key technical result: We show that CFI-structures (over ordered expander graphs) are
(FPC-)homogeneous. This means that the orbits of k-tuples in CFI-structures can be
uniquely described in FPC by using only O(k) many variables. This is extremely useful as
it implies that we can actually order the set of orbits on k-tuples in FPC using only O(k)
many variables. To put it differently, we show that in CFI-structures over expander graphs,
FPC can describe tuples up to their automorphism type without using too many resources
(variables). We believe that this result is of independent interest and should prove useful in
other applications (one example is discussed in Section 7).

Vol. 15:1 A FINITE-MODEL-THEORETIC VIEWON PROPOSITIONAL PROOF COMPLEXITY 4:31

Theorem 5.7. (Homogeneity) There is a constant ` ≥ 1 such that for every k ≥ 1, p ∈ P,

and every A = CFI [G; p;λ] ∈ CFI [F ; p] with automorphism group Γ ≤ FE(G)
p and every

~a,~b ∈ Ak we have that (A,~a) ≡`·k (A,~b) if, and only if, Γ(~a) = Γ(~b).

Let 1 > ε > 0 be the expander constant corresponding to the class F , that is for all
G ∈ F we have that h(G) ≥ ε. We will prove Theorem 5.7 for

` ≥ 12

ε
.

To this end, we inductively show the following for all k ≥ 0: For A = CFI [G; p;λ] ∈
CFI [F ; p] with automorphism group Γ ≤ FE(G)

p , every ~a ∈ Ak, and every a, b ∈ A such that

(A,~a, a) ≡`·(k+1) (A,~a, b) we can find an automorphism π ∈ Γ such that π(~a, a) = (~a, b).

If we have shown this, then the above theorem easily follows. Indeed, let ~a,~b ∈ Ak
such that (A,~a) ≡`·k (A,~b). We have to show that in this case ~a and ~b are in the same

orbit, i.e. Γ(~a) = Γ(~b). In other words, we have to show that every ≡`·k-class on Ak is a
single Γ-orbit (clearly, each such class is a union of orbits). For the sake of contradiction,

assume that Γ(~a) 6= Γ(~b). Let r ≥ 0, r < k be maximal with respect to the following

property: there exists ~c ∈ Γ(~a) such that ~b and ~c share a prefix of length r, that is
~b = (b1, . . . , br, br+1, · · · bk), and ~c = (b1, . . . , br, cr+1, . . . ck), and br+1 6= cr+1. But then
(A, a1, . . . , ar, ar+1) ≡`·k (A, b1, . . . , br, cr+1) (since ~a and ~c are in the same orbit) and
(A, a1, . . . , ar, ar+1) ≡`·k (A, b1, . . . , br, br+1) (by the assumption). Hence

(A, b1, . . . , br, br+1) ≡`·k (A, b1, . . . , br, cr+1).

By the above proposition, we can find π ∈ Γ such that π(b1, . . . , br, cr+1) = (b1, . . . , br, br+1).

This means that π(~c) ∈ Γ(~a) is a tuple in Γ(~a) sharing a longer prefix with ~b than ~c which
leads to the desired contradiction.

Hence, let us now focus on proving the above proposition. For this let k ≥ 0, ~a ∈ Ak,
and a, b ∈ A such that (A,~a, a) ≡`·(k+1) (A,~a, b) where A = CFI [G; p;λ] ∈ CFI [F ; p]. Recall

that Γ ≤ Inv(FE(G)
p) ≤ FE(G)

p denotes the automorphism group of A. We have to show
the existence of some π ∈ Γ such that π(~a, a) = (~a, b). To do this, we establish two key

properties of the elements a, b ∈ A using the fact that (A,~a, a) ≡`·(k+1) (A,~a, b). Clearly, we
can assume that a 6= b, because the claim is trivial otherwise.

(P1) The elements a, b are in the same edge class in A, i.e. there exists e ∈ E(G) such that
a, b ∈ ep = e× Fp ⊆ A.

This easily follows from the fact that each edge class ep can be identified in counting
logic by using the preorder � and at most three variables (which we use to enumerate the
edge classes starting from the minimal one). Moreover, this formula does not require access
to any of the parameters from ~a. Hence, a counting logic formula with three variables could
distinguish between a and b in A if they were in different edge classes. Note that ` ≥ 12, so
we clearly have enough variables available.

The next simple observation is that this edge class ep is free, a property that we are
going to define now. Let Bl ⊆ E(G) be the smallest set such that

(i) if ai ∈ fp, for some 1 ≤ i ≤ k and for f ∈ E(G), then f ∈ Bl, and
(ii) if f ∈ Bl, then f−1 ∈ Bl,

4:32 E. Grädel, M. Grohe, B. Pago, and W. Pakusa Vol. 15:1

We say that the edges in Bl are blocked and the edges E(G) \ Bl are free. For blocked
edges it is straightforward to define the individual elements in the corresponding blocked
edge classes.

Lemma 5.8. For every blocked edge f ∈ Bl and every c ∈ fp = f × Fp ⊆ A, there exists a
formula of counting logic ϕ(x1, . . . , xk, y) with at most k + 2 many variables which defines c
in (A, a1, . . . , ak), i.e. such that for every d ∈ A we have that A |= ϕ(a1, . . . , ak, d) if, and
only if, c = d.

Proof. First of all, assume that an edge f ∈ Bl is marked as blocked because for some
1 ≤ i ≤ k we have that ai ∈ fp = f ×Fp, i.e. we are in case (i). Recall that the cycle relation
C defines a directed cycle on fp. Hence, using C and ai as a parameter we can define every
other element c ∈ fp in counting logic using the parameter ai and one additional auxiliary
variable.

Secondly, assume that f ∈ Bl is blocked, because g = f−1 ∈ Bl, i.e. we are in case (ii).
By the induction hypothesis we know that we can define in counting logic each element in
gp using k + 2 many variables (and the parameters in ~a). Let ϕ(~x, y) be a formula defining
such an element c ∈ gp. Then ψ(~x, y) = ∃z(I(z, y) ∧ ϕ(~x, z)) is a formula of counting logic
with at most k + 2 many variables which defines an element in fp. Since I is a bijection
between fp and gp we can define each element in fp in this way.

For obvious reasons, the number of blocked edges is linearly bounded in k:

Lemma 5.9. The number of blocked edges is linear in k: we have |Bl| ≤ 2k (or |Bl| ≤ k
if we count edges as undirected).

Let us come back to our original goal. Recall that we have to show the existence of some
π ∈ Γ such that π(~a, a) = (~a, b) where (A,~a, a) ≡`·(k+1) (A,~a, b), a 6= b. With the above
preparation it is now easy to see that a and b satisfy the following property.

(P2) The edge class ep, e ∈ E(G), that contains the elements a, b (see (P1)), is free, that is
e ∈ E(G) \Bl.

This immediately follows from Lemma 5.8 (note that k + 2 ≤ ` · (k + 1)).
Let us fix a free edge class ep, e ∈ E(G)\Bl. We are going to construct an automorphism

π ∈ Γ such that π(~a) = ~a and such that π(e) = 1, that is π acts as a cyclic shift by one
on the edge class ep. If we can show this, then our original claim follows. To this end, we
distinguish between the following two cases. We say that the edge e lies on a free cycle,
if there exist edges e0 = (v0, v1), e1 = (v1, v2), . . . , er = (vr, v0), r ≥ 2, such that all vi,
0 ≤ i ≤ r, are distinct and such that e = e0 and ei ∈ E(G) \ Bl, 0 ≤ i ≤ r. Indeed, if e
lies on such a free cycle, then we can construct an automorphism π ∈ Γ with the desired
properties as follows: we simply set π(ei) = 1 and π(e−1

i) = −1 for all 0 ≤ i ≤ r. Note that
each of the moved edge classes epi is free, so none of the elements in the tuple ~a will occur in
any of the edge classes moved by π, that is π(~a) = ~a.

Hence, the interesting case is that e does not lie on a free cycle. We show that in this
case each element in the edge class ep can be defined in counting logic by fixing elements in
a bounded number of additional edge classes (more precisely, by using at most ` · (k + 1)
many variables). Hence, for our original setting this would mean that the assumption

(A,~a, a) ≡`·(k+1) (A,~a, b) would already imply that a = b. To prove this, we strongly make
use of the fact that the family F of graphs from which we constructed the CFI-class CFI [F ; p]
is an expander family. Let us formulate our claim precisely.

Vol. 15:1 A FINITE-MODEL-THEORETIC VIEWON PROPOSITIONAL PROOF COMPLEXITY 4:33

Lemma 5.10. As above, let A = CFI [G; p;λ] ∈ CFI [F ; p], ~a ∈ Ak, ` ≥ 12/ε, and let
e ∈ E(G) \B be a free edge which does not lie on a free cycle. Then for every b ∈ ep there
exists a formula ϕ(~x, y) of counting logic with at most ` · (k + 1) many variables that defines
b in (A,~a), that is for every c ∈ A we have that A |= ϕ(~a, c) if, and only if, c = b.

Proof. Let us consider the subgraph H = (W,F) of G that is induced by the free edges
E(G) \Bl. Note that since Bl is symmetric, H is an undirected graph. Let e = (v, w) ∈
E(G) \Bl be the free edge that we consider and let X ⊆ V (H) and Y ⊆ V (H) denote the
connected components of v and w in the graph H \ e, that is in the graph that results from
H by removing the (undirected) edge e. Since e does not lie on a free cycle we know that
X and Y are disjoint. Using the expander property of G, we now aim to bound the size
of X or Y . Clearly, at least one of the two sets contains at most |V (G)|/2 many vertices.
Without loss of generality, let us assume that |X| ≤ |V (G)|/2. Then |∂X| ≥ |X| · ε since
h(G) ≥ ε. The important observation is that we can bound |∂X| in terms of k. Indeed, in
G every edge leaving the set X (different from e) has to be blocked, since X is a connected
component in H. Hence |∂X| ≤ k. This yields the bound of |X| ≤ k/ε on the size of X.

In conclusion, the set X ⊆ V (G) in G is a set of vertices of size at most k/ε such
that each edge leaving X is blocked except for the single free edge e. We now consider
the CFI-substructure B of the input CFI-structure A induced on the edge classes incident
with vertices in X where in every blocked edge class fp we arbitrarily mark an element
c ∈ fp to be c = (f, 0) ∈ fp (this choice depends on the parameters ~a). More precisely, let
EX = {e ∈ E(v) : v ∈ X, e 6∈ Bl}, then the universe B of B is the set B =

⋃
e∈EX

ep, and the
linear preorder �, the cycle relation C, and the inverse relation I in B are just the restrictions
of the corresponding relations in A to the subuniverse B. To define the CFI-relation RλB
on B we distinguish between the following cases. Recall that Rλ =

⋃
v∈V (G)R

λ(v). First,

let us consider vertices v ∈ X whose neighbours are all contained in X. In this case we
simply set RλB(v) = Rλ(v). For vertices v ∈ X for which some incident edge (classes) are

blocked we define RλB(v) as follows. Let F ⊆ E(v) denote the set of blocked edges incident

with v. Note that |F | ≤ 2. We fix xf ∈ fp for every f ∈ F (we can make this choice using
the parameters ~a, see Lemma 5.8). Then we define RλB(v) to be the restriction of Rλ(v) to

those tuples that contain xf for every f ∈ F . If we recall the definition of Rλ(v), then this
intuitively corresponds to declaring xf = (f, 0). In particular, note that the arity of RλB(v)

is 3− |F | ≥ 1. Finally, the CFI-relation RλB in B is defined as RλB =
⋃
v∈X R

λ(v).
If follows from our preparations that B can be defined in A by using a parametrised,

one-dimensional interpretation I(x̄) in counting logic, i.e. I(A,~a) = B. Moreover, I can
be constructed by using, as a rough estimate, at most k + 6 many variables. The most
important thing to observe is that we can use Lemma 5.8 in order to fix elements in all
blocked edge classes as required.

We now want to argue that every possible automorphism π ∈ FEX
p of B will fix the

edge class ep (recall that e denotes the single free edge e that leaves the set X). Recall
that the inverse constraints (Inv) enforce that for each pair of dual edges f, g ∈ EX we
have π(f) + π(g) = 0. Note that for each edge f ∈ EX we have f−1 ∈ EX except for the
single edge e for which e−1 6∈ EX . Hence

∑
f∈EX

π(f) = π(e). Moreover, recall that the

CFI-constraints (CFI) enforce that for each v ∈ X we have
∑

f∈EX(v) π(f) = 0. Hence,∑
v∈X

∑
f∈EX(v) π(f) = 0. Since

∑
f∈EX

π(f) =
∑

v∈X
∑

f∈EX(v) π(f) we conclude that

π(e) = 0, that is π fixes the edge class ep, as claimed.

4:34 E. Grädel, M. Grohe, B. Pago, and W. Pakusa Vol. 15:1

It follows that in B every element x ∈ ep can be defined in counting logic by using
roughly |EX |+ 6 many variables. Indeed, for some c ∈ ep, we can use |EX | many variables to
fix elements in all other edge class and then describe the isomorphism type of the structure
(B, c). Since each c ∈ ep is in a singleton orbit, these isomorphism types will be different for
all elements c ∈ ep. Note that |EX |+ 6 ≤ 3k/ε+ 6. If we translate the resulting formulas
back to A via I(~x), then we obtain a formula in counting logic that defines c ∈ ep in A
and which uses at most 3k/ε + 6 + k + 6 ≤ 4k/ε + 12 ≤ (12k + 12)/ε ≤ ` · (k + 1) many
variables.

This completes the proof of Theorem 5.7.

Definition 5.11. For ` ≥ 1, we say that a structure A with automorphism group Γ is

`-homogeneous if for all k ≥ 1 and all k-tuples ~a,~b ∈ Ak we have that

(A,~a) ≡`·k (A,~b) if, and only if, Γ(~a) = Γ(~b).

Moreover, we say that a class K of structures is homogeneous if there is an ` ≥ 1 such that
each structure A ∈ K is `-homogeneous.

Corollary 5.12. The class of CFI-structures CFI [F ; p] is homogeneous.

As mentioned before, an important consequence of homogeneity is that FPC can
(uniformly) define a total preorder on the set Ak, for each k ≥ 1, which orders k-tuples up to
orbits. Moreover, the number of variables required by such an FPC-formula is linear in k. To
see this, we make use of the well-known fact that for every ` ≥ 1 there exists an FPC-formula
Tp`(~x, ~y) with O(`) many variables which defines on each input structure A a linear preorder

on A` which distinguishes between all pairs of tuples ~a,~b ∈ A` for which (A,~a) 6≡` (A,~b)
holds, see e.g. [39]. That is Tp`(~x, ~y) defines in each input structure A a linear order on the

set {[~a]≡` : ~a ∈ A`} consisting of ≡`-equivalence classes [~a]≡` = {~b ∈ A` : (A,~a) ≡` (A,~b)}
for ~a ∈ A`. Of course, we can also use the formula Tp`(~x, ~y) to define the corresponding
preorder on k-tuples for lengths 1 ≤ k < ` (a common approach is to extend k-tuples to
`-tuples by repeating the last component). We denote the corresponding FPC-formula by
Tp`k(~x, ~y) = Tp`k(x1, . . . , xk, y1, . . . , yk).

Theorem 5.13. Let A be `-homogeneous with automorphism group Γ. Then the FPC-
formula Tp`·kk (~x, ~y) defines a total preorder � on Ak that identifies k-tuples which are in the

same orbit. In particular, Tp`·kk (~x, ~y) induces a linear order on the set of orbits of k-tuples
{Γ(~a) : ~a ∈ Ak}.

5.5. CFI-structures are Cyclic. In Section 5.4 we proved that the CFI-classes CFI [F ; p]
are homogeneous, which by Theorem 5.13 implies that FPC can order k-tuples in structures
A ∈ CFI [F ; p] up to orbits using only O(k) many variables. In this subsection we go one step
further and show that, as a result of the algebraic properties of the automorphism groups of
CFI-structures, each individual orbit of k-tuples can be linearly ordered in fixed-point logic
with counting by fixing a single k-tuple from this orbit as a parameter (and, again, by using
O(k) many variables only). Furthermore, we are going to show that this key property of
CFI-structures remains intact if we apply logical transformations. Intuitively, our results
show that CFI-structures come quite close to ordered structures: in FPC, one can preorder
the elements of CFI-structures up to orbits,and, secondly, each individual orbit can be totally
ordered by fixing a single element as a parameter. Note, however, that this does not mean

Vol. 15:1 A FINITE-MODEL-THEORETIC VIEWON PROPOSITIONAL PROOF COMPLEXITY 4:35

that we can order the full CFI-structure, since this would require to fix a parameter in each
of the orbits at the same time. Indeed, Theorem 5.6 implies that CFI-structures can not
be totally ordered in FPC if we restrict ourselves to formulas with a sublinear number of
variables.

Recall that, for 1 ≤ k ≤ `, the formulas Tp`k = Tp`k(~x, ~y) define a total preorder that
distinguishes k-tuples up to ≡`-equivalence. In what follows we make use of parametrised
versions of these formulas. More precisely, for a parameter tuple ~z of length r ≥ 0 we
write Tp`k[~z](~x, ~y) to denote the formula Tp`r+k(~z~x, ~z~y) (of course this only makes sense if

r + k ≤ `). Note that, again, this formula orders k-tuples up to ≡`-equivalence, but now we
consider ≡`-equivalence with respect to the additional parameter tuple ~z. Hence for every
structure A and every ~c ∈ Ar we have that the linear preorder defined by Tp`k[~c] in A refines

the linear preorder defined by Tp`k in A. Note that, in particular, the tuple ~c will always be

in a singleton class according to the preorder Tp`k[~c]. Note further that for the special case

r = 0 we just obtain the formula Tp`k.
Given a structure A with automorphism Γ, we denote for a parameter ~c ∈ Ar by Γ~c ≤ Γ

the stabiliser subgroup of the tuple ~c, i.e. the group of all π ∈ Γ such that π(~c) = ~c.

Definition 5.14. A structure A with automorphism group Γ is called (`, p)-cyclic, for ` ≥ 1
and p ∈ P, if the following holds for every k ≥ 1:

(C-I) Γ is an Abelian p-group. In particular, for every k-tuple ~a ∈ Ak, the size of the
orbit Γ(~a) of ~a is a p-power, that is |Γ(~a)| = pn for some n ≥ 0.

(C-II) For every ~c ∈ Ar, r ≥ 0, the FPC-formula Tp
`·(k+r)
k [~c] defines a total preorder on

Ak such that two tuples ~a,~b ∈ Ak are incomparable if, and only if, Γ~c(~a) = Γ~c(~b).
Note that for r = 0 we obtain `-homogeneity as a special case.

We say that a class K of structures is (`, p)-cyclic if every structure A ∈ K is (`, p)-cyclic.

Actually, if in the above definition, we would only include item (C-II), then the resulting
notion of (`, p)-cyclic structures would not be very interesting: it would collapse to the notion
of `-homogeneity, see Theorem 5.16 below. However, in combination with condition (C-I),
we get a remarkable effect:

Lemma 5.15. In Definition 5.14, we can add the following to item (C-II) without changing

the resulting notion: Assume that r ≤ k. Then the preorder defined by Tp
`·(k+r)
k [~c] induces a

linear order on the orbit Γ(~c) of the parameter ~c.

Proof. This follows from the fact that, by (C-I), Γ is an Abelian group (and so the induced
group action on the orbit is regular). More explicitly, assume that for some π ∈ Γ and

(~c,~a) ∈ {~c} × Γ(~c) it holds that π(~c,~a) = (~c,~b). Choose σ ∈ Γ such that σ(~a) = ~c. Then
π(σ(~a)) = ~c. Since Γ is Abelian, it follows that σ(π(~a)) = ~c. Hence π(~a) = ~a, which yields

~a = ~b. Hence, it follows that for every ~a ∈ Γ(~c) we have |Γ~c(~a)| = 1. Having this, item (C-II)

implies that Tp
`·(k+r)
k [~c] defines a linear order on {~c} × Γ(~c), as claimed.

Theorem 5.16. Let A be `-homogeneous and assume that the automorphism group Γ of
A is an Abelian p-group. Then A is (`, p)-cyclic. In particular, there is ` ≥ 1 such that the
classes CFI [F ; p] are (`, p)-cyclic for all p ∈ P.

Proof. We already analysed the automorphism groups of CFI-structures A ∈ CFI [F ; p] in
Section 5.2. In particular, we saw that these groups are elementary Abelian p-groups, so

4:36 E. Grädel, M. Grohe, B. Pago, and W. Pakusa Vol. 15:1

property (C-I) holds for CFI-structures in CFI [F ; p]. Moreover, Corollary 5.12 tells us that
classes of CFI-structures are homogeneous.

Now, let ` ≥ 1 and let A be `-homogeneous with automorphism group Γ. Then, by

Theorem 5.13, we know that for every k ≥ 1, r ≥ 0 the formula Tp
`·(r+k)
(r+k) (~x1~x2, ~y1~y2) defines

in A a total preorder on Ar+k which order (r + k)-tuples up to Γ-orbits. Since

Tp
`·(r+k)
k [~z](~x, ~y) = Tp

`·(r+k)
(r+k) (~z~x, ~z~y),

we know that for every ~c ∈ Ar it holds that the total preorder Tp
`·(r+k)
k [~c] distinguishes

k-tuples ~a,~b ∈ Ak if, and only if, Γ(~c~a) 6= Γ(~c~b). But this last condition is indeed equivalent

to Γ~c(~a) 6= Γ~c(~b), which completes the proof.

Our next aim is to show that the class of (`, p)-cyclic structures is closed under FPC-
transformations. Unfortunately, stated in this very general form, this claim is clearly wrong.
For example, FPC-transformations can easily generate each fixed finite structure (starting
from any structure), and so the resulting structures will not have Abelian automorphism
groups for instance (which is one of the requirements for being (`, p)-cyclic). However, as
we will show next, one can extend each FPC-interpretation I to an FPC-interpretation
Norm(I) in such a way that the original input structure is preserved as a substructure. This
will enable us to maintain the property of being (`, p)-cyclic.

Let us be a bit more precise. As said, instead of only interpreting I(A) in A we want to
interpret the structure Norm(I)(A) = I(A)]A in A, that is the disjoint union of the original
structure A and the interpreted structure I(A). However, as such, this is not sufficient since
we can still get new automorphisms due to the new substructure I(A). To overcome this
problem, we create additional relations that indicate from which elements in A the newly
created elements in I(A) originate. Note that the elements in I(A) are equivalence classes
of tuples of elements from A and we will encode this information in Norm(I)(A). Formally,
our result is as follows.

Theorem 5.17. Let I(~z) ∈ FPC[σ → τ, ~z] be an FPC-interpretation of dimension d and
with r ≥ 0 parameters ~z, |~z| = r, that maps σ-structures to τ -structures. Let τ̂ = σ] τ]{∈}
(where ∈ is a fresh binary relation symbol). Then there exists an FPC-interpretation
J (~z) ∈ FPC[σ → τ̂ , ~z] such that for every structure A and every ~a ∈ dom(A, ~z) the following
holds for B = I(A,~a) and C = J (A,~a):

(i) the dimension of J (~z) is at most d+ 3, and
(ii) B ⊆FO C|τ , that is B is an FO-definable substructure of the reduct of C to τ , and
(iii) if Γ = Aut(A,~a) and ∆ = Aut(C), then Γ ∼= ∆ (that is, up to isomorphism, the

automorphism group of the input structure (A,~a) is preserved), and
(iv) if A is `-homogeneous (for ` ≥ 3), then the structure C is ` · (d+ r)-homogeneous.

Proof. Let I(~z) be d-dimensional with domain formula ϕδ(~x, ~z) and congruence formula
ϕ≈(~x1, ~x2, ~z). Let A be a σ-structure and let ~a ∈ dom(A, ~z). The elements of the interpreted
structure B = I(A,~a) are equivalence classes of tuples in dom(A, ~x). The idea of the con-
struction of C is as follows. The universe of C consists of four different sorts UA, UT , UB, UN .
The first sort UA contains elements that represent the elements in the universe of the original
structure A. The second sort contains elements to represent all elements in dom(A, ~x) that
are selected by ϕδ and, furthermore, a unique element that is used in order to encode the
parameter tuple ~a. Also UT contains auxiliary elements to encode the structure of tuples, that

Vol. 15:1 A FINITE-MODEL-THEORETIC VIEWON PROPOSITIONAL PROOF COMPLEXITY 4:37

is the individual entries. The third sort UB contains elements to represent the elements of the

structure B, that is the equivalence classes [~b] = {~c ∈ dom(A, ~x) : A |= ϕδ(~c,~a)∧ϕ≈(~b,~c,~a)}
for ~b ∈ dom(A, ~x) with A |= ϕδ(~b,~a). The last sort UN is an auxiliary sort which holds a
sufficient amount of numbers (that is a linearly ordered set) to represent the different sorts,
their relations, the indices for tuples, and so on. The binary relation symbol ∈ is used
to relate the different sorts and to encode the tuple structure. Relations in σ and τ are
interpreted on the respective sorts UA and UB as in A and B, respectively.

Let us elaborate more on some technical details (we remark that, as usual, there are
many different ways to formalise an appropriate encoding; in order to verify the properties of
J , we describe one of them). First of all, we extend the dimension of I by three additional
components (µ, ν, x) where the first two variables µ, ν range over the number sort and
where x ranges over the vertex sort (we remark that it would be sufficient to increase
the dimension by at most one numeric component, but this would unnecessarily make the
following description more complicated). In general, we will use the first component µ to
address different sorts. For instance, let us start with the number sort UN . We can use

the congruence formula to merge all tuples (0, µ, d,~b) and (0, µ, d′,~c) (for d, d′ ∈ A and
~b,~c ∈ dom(A, ~x)) and then use the resulting set {(0, 0, ?), (0, 1, ?), (0, 2, ?), . . . } to encode
the elements in UN . Hereby, we choose the range of the numeric variable ν larger than the
range of any other numeric variable which occurs in the interpretation I. To identify the
numeric sort UN in the resulting structure we define a linear order on UN using the new
relation symbol ∈. As a second step, we encode elements a ∈ A of the original structure A
in C by using elements of the form (1, ?, a, ?) (as before, the ?’s in this notation indicate
that we use the congruence formula to merge all elements with different ?-components).
To identify the first sort UA in the resulting structure C, we draw an ∈-edge from the first
element in the number sort UN to all elements in the first sort UA. Of course, we define all
the relation symbols in σ on UA by copying their definition from A.

Thirdly, to encode the elements in dom(A, ~x) and the parameter tuple ~a we proceed in
two steps. First of all, for every index 1 ≤ i ≤ max(k, r), we introduce component elements
(i, a), a ∈ A, and (i,m), m < dom(ν), to represent all possible components of tuples in
dom(A, ~x). Formally, we encode them in C by using elements of the form (2 + i, ?, a, ?)
and (2 + i,m, ?). To identify them in C, we mark them in a similar way as before, i.e. we
introduce ∈-edges from position 2 + i in the number sort to all component elements (i, a)
and (i,m). We also connect all component elements (i, a) and (i,m) to their respective
values a and m via ∈-edges (which point from component elements to the sorts UA and
UN). We proceed to represent all tuples in dom(A, ~x) using the original components of the

interpretation I, that is we use elements (2 + max(k, r) + 1, ?, ?,~b) where ~b ∈ dom(A, ~x) and

mark them appropriately. We additionally connect tuples (2 + max(k, r) + 1, ?, ?,~b) with
their matching component elements, that is with (i, bi). We then use ϕδ to select those
tuples in dom(A, ~x) that are in the domain of I. Also, we add one further special tuple
element, say encoded as (2 + max(k, r) + 1, 0, ?), which is meant to encode the parameter
tuple ~a. This special element is thus connected to all component elements (i, ai). Finally,

we make an additional copy of all tuple elements (2 + max(k, r) + 2, ?, ?,~b) that we added,
and use ϕδ to merge them according to I. This will give us the sort of elements UB that we
use in order to represent the elements of B. We mark them appropriately in the same way
as we did for the other sorts. Recall that these elements are equivalence classes of elements
in dom(A, ~x), hence we additionally connect them, with ∈-edges, to their representatives in

4:38 E. Grädel, M. Grohe, B. Pago, and W. Pakusa Vol. 15:1

the tuple sort UT . We define the relations in τ on UB according to I, that is we copy them
from B = I(A,~a).

From this description it is easy to see that all of the required transformations can
be expressed by an FPC-interpretation J with dimension at most d + 3 (and while we
increase the number of variables by a constant number only). Also, it should be clear that
item (ii) holds as we can very easily define the different sorts in the resulting structure C
(in particular, the sort UB is the maximal sort according to our linear order on UN). Let
us now consider item (iii). The main observation is that each automorphism π ∈ ∆ of C
is uniquely defined by its projection on the sort UA. Indeed, this directly follows from
the way in which we constructed C using the new relation symbol ∈. First note that no
automorphism of C can move elements in the numeric sort UN , since ∈ defines a linear
order on UN . In particular it follows that all sorts UN , UA, UB, UT are preserved. Secondly,
assume that we have a permutation π on UA that can be extended to an automorphism
of C. Since the σ-relations on UA in C coincide with the relations in A, we know that π is
an automorphism of A. Moreover, to obtain an automorphism of C, there is only one unique
way in which we can extend π to the tuple sort UT and the sort UB encoding the universe
of B. Indeed, the ∈-edges enforce that tuple components (i, a) are moved to (i, π(a)) (and

tuple components (i,m) cannot be moved) and, accordingly, that tuples ~b in UT are moved

to π(~b). In particular, for the special tuple ~a this means that we have π(~a) = ~a. Finally, since
π extends uniquely to the tuple sort UT , it also uniquely extends to the sort UB of elements

of the interpreted structure B = I(A,~a). Indeed, the elements in UB are sets [~b] of tuples
~b ∈ UT , and we have connected these sets with the elements they contain using ∈-edges

in C. Hence, for each equivalence class [~b] ∈ UB for ~b ∈ UT we have π([~b]) = [π(~b)]. So
altogether, we can conclude that the extension of π from UA to the other sorts UN , UT , UB
is unique. On the other hand, note that if π is an automorphism of A satisfying π(~a) = ~a,
then the resulting extended π is indeed an automorphism of C. To see this, note that all
relations in τ and σ are preserved under automorphisms of (A,~a): for the σ-relations this
follows from the assumption that π is an automorphism of A, and for the τ -relation it follows
from the fact that they are defined by the FPC-interpretation I in (A,~a). This shows that
Aut(A,~a) ∼= Aut(C).

Finally, let us consider consider item (iv). Assume that A is `-homogeneous, for ` ≥ 3,

and let k ≥ 1. Let ~c = (c1, . . . , ck) and ~d = (d1, . . . , dk) be two k-tuples of elements in C.

We have to show that if (C,~c) ≡`·(d+r)·k (C, ~d), then there exists an automorphism π of

C such that π(~c) = ~d. The main observation is that each element in C is d-supported by
elements of A, that is the element can be defined in FPC in C using at most d parameters
from UA. More precisely, for every element c of C there exist at most d-many elements
s1, . . . , sd ∈ A = UA for which there exists an FPC-formula ψ(x, y1, . . . , yd) with at most
(d+3) many variables such that ψ(x, s1, . . . , sd) defines c in the structure C. For instance, for
tuples c = (b1, . . . , bd) in UT , we can choose s1, . . . , sd to be the components b1, . . . , bd of the

tuple, and for elements c = [~b] ∈ UB we can choose the components of some representative.

Hence, if (C,~c) ≡`·(d+r)·k (C, ~d), then in particular we can find two supports s(~c) ∈ Ud·kA for

~c and s(~d) ∈ Ud·kA for ~d such that (C, s(~c)) ≡`·(d+r)·k (C, s(~d)). Moreover, since ~a is FPC-
definable in C (each component of the tuple ~a is definable using at most three variables),

we can conclude that (C, s(~c),~a) ≡`·(d+r)·k (C, s(~d),~a). Since A is `-homogeneous, we know

that Tp
`·(d·k+r)
d·k [~a] defines a total preorder on (d · k)-tuples in A which orders tuples up to

Vol. 15:1 A FINITE-MODEL-THEORETIC VIEWON PROPOSITIONAL PROOF COMPLEXITY 4:39

orbits with respect to Aut(A,~a) ∼= Aut(C). Since A is a definable substructure of C we know

that (A, s(~c),~a) ≡`·(d+r)·k (A, s(~d),~a). It follows that we can find a π ∈ Aut(C) such that

π(s(~c)) = s(~d). Since supports uniquely describe elements, we conclude that π(~c) = ~d, as
claimed.

In what follows, for a given FPC-interpretation I(~z) ∈ FPC[σ → τ, ~z], we denote the
interpretation J (~z) as constructed in Theorem 5.17 by Norm(I)(~z).

Corollary 5.18. For every FPC-interpretation I(~z), there exists ` ≥ 1 such that the class
of structures {Norm(I)(A,~a) : A ∈ CFI [F ; p],~a ∈ Ar} is (`, p)-cyclic.

Intuitively we showed that the class of (`, p)-cyclic is closed under FPC-interpretations
(which, if stated precisely, means that we have to rewrite the interpretations in normal form
and we have to increase the homogeneity constant by a factor depending on the dimension
and parameter length of the specific interpretation). We end this section by stating a much
simpler observation. Assume that we have two (`, p)-cyclic-structures A and B of the same
vocabulary τ . Then the ordered pair (A,B) is a (`, p)-cyclic-structure as well. Of course,
to some extent this depends on the technical details on how we implement ordered pairs
as relational structure. The most important property is that, in the ordered pair (A,B),
we have a simple means to identify the two substructures A and B, for instance by using
additional predicate symbols to identify the two universes A and B. In this article, we agree
to understand ordered pairs in this way. The consequence is that the automorphism group
of (A,B) is just the direct product of the automorphism groups of A and B. In particular,
orbits of (mixed) tuples in (A,B) can be described in terms of the respective subtuples in A
and B. Having this, we can easily see that the following holds.

Theorem 5.19. Let A and B be two (`, p)-cyclic structures of vocabulary τ . Then the
ordered pair (A,B) is an (`, p)-cyclic structure as well.

5.6. Solving Cocyclic Linear Equation Systems. If we want to express k-dimensional
PC-refutations over a field F in FPC, then we need to be able to define solution spaces of
linear equation systems over that field F in FPC, see Figure 2. In Section 4.5 we proved
that FPC can define solution spaces of linear equation systems over Q, and this was the key
to showing that FPC can express k-dimensional PC-refutations over Q with polynomial
bit-complexity, cf. Theorem 4.9. Hence, in order to prepare our main result of this section
(Theorem 5.25), we are now going to show that FPC can define solution spaces of linear
equation systems over a finite field F of characteristic q under the assumption that these
systems are interpreted in a class of (`, p)-cyclic-structures with q 6= p. Moreover, we show
that the number of required variables is bounded linearly in ` (with a constant factor that
only depends on the initial interpretation). Note that our assumption q 6= p is crucial: the
CFI-problem over Fp cannot be expressed in FPC, but it can be reduced (in first-order
logic) to the solvability problem of linear equation systems over Fp.

For our proof we make use of a key idea from [28]: in the special situation that we
consider here, it turns out that (solvable) linear equation system always have symmetric
solutions, that is solutions which are invariant under all automorphisms of the underlying
linear equation systems. Together with the property of homogeneity this observation allows
us to show that FPC can define such symmetric solutions, see [28]. In this article, we go one
important step further. We not only show that, in this particular setting, we can define the

4:40 E. Grädel, M. Grohe, B. Pago, and W. Pakusa Vol. 15:1

Boolean solvability problem for linear equation systems in FPC, but that we can also define
the more general functional problem of expressing solution spaces of given linear equation
systems.

Let us remark that our results here extend our approach from [28] in another crucial way.
In [28] we considered the CFI-construction with respect to underlying graphs of unbounded
degree. The reason is that, if we work with such underlying graphs, then this considerably
simplifies the proof of the homogeneity property for CFI-structures. Here, in contrast,
we consider the “full” power of the CFI-construction, that is with respect to a family of
underlying three-regular expander graphs. This has the effect that we get much better lower
bounds on the number of variables, and this makes our separation results even stronger.
That is to say that the techniques that we develop here can readily be used in order to
strengthen our separation results from [28] to formulas with a sublinear number of variables
(rather than a constant number as we considered in [28]).

As usual, in order to talk about systems of linear equations over finite fields in the
context of logical definability, we first have to agree on an encoding of such systems as finite
relational structures. Again, the concrete choice does not matter, so we do not specify such
an encoding explicitly. Let us rather go through some notation that we use in this section.
We consider (unordered) matrices M over a finite field F as mappings M : I × J → F for
two (non-empty) index sets I and J . An (unordered) vector v over a finite field F is a
mapping v : I → F. A linear equation system M · x = b over a finite field F is specified by
an I × J-coefficient matrix M over F and an I-constants vector b : I → F. We usually think
of the finite field F as being part of the input. We are primarily interested in the setting
where the characteristic q = char(F) of this field F and the prime p for CFI-class CFI [F ; p]
are distinct:

Definition 5.20. Let ` ≥ 1. We say that a τ -structure A contains an `-cocyclic vector, (or
matrix, or linear equation system) over a finite field F if

• the structure A is (`, p)-cyclic for some prime p ∈ P, and
• for some distinguished relation symbol S ∈ τ , the substructure of A induced on S is (the

structural encoding of) a vector v : I × F (or matrix M : I × J → F, or linear equation
system M · x = b) over the finite field F with characteristic different from p, that is
char(F) = q for some q ∈ P, p 6= q.

We proceed to show that FPC can express solution spaces of `-cocyclic linear equation
systems using O(`) many variables only. The proof consists of two steps. First of all, we
show that FPC can define a single solution of a (solvable) `-cocyclic linear equation system
(Theorem 5.21). In a second step we then show that FPC can also define (small) generating
sets for kernels of `-cocyclic matrices (Theorem 5.22). By putting these two results together,
we obtain the desired result. The main idea for this second step is to repeatedly make use of
the FPC-formula from Theorem 5.21 for solving `-cocyclic linear equation systems and the
fact that (`, p)-cyclic structures can be linearly ordered locally in FPC.

Theorem 5.21. For every ` ≥ 1 there exists an FPC-formula ϕ with O(`) many variables
such that ϕ defines in every structure A that contains a solvable `-cocyclic linear equation
system M · x = b over a finite field F, where M : I × J → F and b : I → F, a solution to
M · x = b, that is ϕ defines a vector v : J → F such that M · v = b (and, if M · x = b is not
solvable, then, by convention, ϕ defines the all-0-vector in A).

Vol. 15:1 A FINITE-MODEL-THEORETIC VIEWON PROPOSITIONAL PROOF COMPLEXITY 4:41

Proof. Let A be an (`, p)-cyclic structure which contains a linear equation system M ·x = b for
a matrix M : I×J → F and a constants vector b : I → F over a finite field F of characteristic
char(F) = q, p 6= q. Let Γ = Aut(A) denote the automorphism group of A. Then Γ acts
on the solution space of M · x = b. We know that this space (in case that it is non-empty)
has size qi for some i ≥ 0, since we are dealing with a linear equation system over a field of
characteristic q ∈ P. On the other hand, recall that Γ is a p-group which means that each
orbit of the action of Γ on the solution space of M · x = b has size pj for some j ≥ 0. We
conclude that there has to be at least one orbit of size one. This, however, means that there
is a solution v : J → F such that π(v) = v for all π ∈ Γ. We call a vector v : J → F which
satisfies this property symmetric. Note that a symmetric vector v : J → F is constant on
the orbits induced by Γ on the set J since π(v)(j) = v(π−1(j)). By our assumption that A
is (`, p)-cyclic, we know that the formula Tp`1(x, y) defines a linear preorder � on J which
linearly orders J up to Γ-orbits. Moreover, recall that this FPC-formula Tp`1 only uses O(`)
variables. Let J = J0 � J1 � · · · � Jn−1 denote the Γ-orbit partition of J .

For 0 ≤ i < n let ti : J → F denote the J-vector which is the identity on the i-th J-orbit,
that is ti(j) = 1 for j ∈ Ji and ti(j) = 0 for j 6∈ Ji. Let T denote the J×{0, . . . , n−1}-matrix
which has ti as its i-th column. Then for every symmetric v : J → F we can find a vector
w : {0, . . . , n− 1} → F such that Tw = v. Indeed, just choose w(i) = v(j) for (some) j ∈ Ji.
We conclude, that the linear equation system M · x = b is solvable if, and only if, the system
M · T · x = b is solvable. Clearly, every solution of M · T · x = b gives rise to a solution of
M · x = b. Hence, it suffices to define a solution of M · T · x = b in fixed-point logic with
counting. However, this is very easy because M ·T is an I ×{0, . . . , n− 1}-matrix which has
a linearly ordered set of columns. Moreover, if we drop duplicates of rows, then the order
on the columns also induces a (first-order definable) linear order on the rows, namely the
lexicographical ordering (note that there exists an FO-definable order on the finite field F).
It follows by the Immerman-Vardi Theorem that fixed-point logic can define a solution of the
system M · T · x = b or determine that the original system was not solvable. This solution
can be lifted to a solution of M · x = b by multiplying by T . Finally, observe that the
number of variables in the resulting formula is independent of ` except for the subformula
Tp`1 which defines the linear order on the orbit-partition of J . Hence, the required number
of variables is indeed O(`).

Theorem 5.22. For every ` ≥ 1 there exists an FPC-formula ϕ with O(`) variables which
defines in every structure A that contains an `-cocyclic matrix M : I × J → F over a finite
field F, a matrix ϕA : J × (J × |J |)→ F such that im(ϕA) = ker(M).

Proof. Let A be an (`, p)-cyclic structure with automorphism group Γ = Aut(A), and assume
that A contains a matrix M : I×J → F over a finite field F of characteristic char(F) = q 6= p.
First of all, we again use the formula Tp`1(x, y) to define a total preorder � on J which
orders the indexing elements in J up to Γ-orbits. Let J = J0 � J1 � · · · � Jn−1. Recall
that Tp`1 is an FPC-formula with O(`) variables. Our plan is as follows. We aim to define a
generating set for ker(M) which consists of i-homogeneous vectors for 0 ≤ i < n− 1. Here
we say that a vector v : J → F is i-homogeneous if v(j) = 0 for all j ∈ Ji′ for i′ < i. That is
an i-homogeneous vector is zero on all Γ-orbits on J which precede the i-th orbit Ji. Our
plan is to define in FPC, for every 0 ≤ i < n, sets Ki consisting of i-homogeneous vectors
v : J → F, v ∈ ker(M), such that the projections of Ki to Ji yield generating sets for the
projections of ker(M) to Ji, which means that

⋃
i<n−1Ki is a generating set for ker(M).

4:42 E. Grädel, M. Grohe, B. Pago, and W. Pakusa Vol. 15:1

We will index the elements in Ki by elements in Ji × |J |. The crucial insight is that
(`, p)-cyclic structures satisfy the additional property that for each fixed parameter j ∈ Ji
the formula Tp`·21 [j](x, y) defines a linear order <j on Ji. Hence, if we have a fixed j ∈ Ji,
then it makes sense to speak of an m-th echelon vector (0, . . . , 0, 1, ?, ?) of the projection
of ker(M) to Ji. Here an m-th echelon vector has entry 1 in the m-th component and is
zero at all preceding components (and its length is |Ji|). Clearly, for some 0 ≤ m ≤ |Ji|
such a vector may not exist, but if we collect a set of (existing) m-th echelon vectors for
0 ≤ m ≤ |Ji|, then we obtain a generating set for the projection of ker(M) to Ji. With
this preparation, we can describe our strategy more precisely. The intention is that the
J-vector v ∈ Ki that is indexed by (j,m), j ∈ Ji, m < |J |, represents an i-homogeneous
vector v ∈ ker(M) with the additional property that the projection of v to Ji is the m-th
echelon vector of the projection of ker(M) to Ji (if it exists, otherwise we agree to let v = 0).
Note that in this way we actually include too many vectors in Ki. Indeed, it would be
sufficient to consider all such vectors indexed by j × |Ji| for a single j ∈ Ji. However, since
we cannot choose a particular j ∈ Ji we just add all of these vectors for any j ∈ Ji. This
does not cause any problems, since we do not aim at defining a basis for ker(M), but just at
defining a generating set.

It remains to see how we can define such a vector v : J → F in FPC given parameters
(j,m) ∈ Ji × |J |. To this end we make use of Theorem 5.21 and the formulas Tp`1 and
Tp`·21 [j] (both with O(`) many variables only). Let us start with the homogeneous linear
equation system M · x = 0 which defines ker(M). Given the parameters (j,m), we now add
extra constraints for the variables x = (xj)j∈J as follows:

• for j′ ∈
⋃
i′<i Ji′ we set xj′ = 0,

• for Ji = j1 <j · · · <j js, we set xj = 0 for j ∈ {j1, . . . , jm−1} and xjm = 1.

It is clear that the solution space of this linear equation system consists precisely of the
i-homogeneous vectors v : J → F in ker(M) whose projections to Ji are m-th echelon vectors
(with respect to the order <j defined by Tp`·21 [j] on Ji). Moreover, this system can easily

be defined in A using an FPC-formula which uses Tp`·21 [j] and Tp`1 as subformulas and
parameters (j,m). We can now make use of Theorem 5.21 to define a solution v : J → F of
this system (if a solution exists) in FPC using again O(`) many variables only. This yields
the desired vector in Ki, that is indexed by (j,m), and it concludes our proof.

By putting Theorem 5.21 and Theorem 5.22 together we arrive at our desired result,
namely that FPC is able to express solution spaces of `-cocyclic linear equation systems
M ·x = b where M : I×J → F and b : I → F using O(`) many variables only. Unfortunately,
there is still a small problem: according to Theorem 5.22, the index set for the solution
space that we get is (J × |J |). However, in general, |J | can be much larger than |I|, and we
would like to get small generating sets for expressing PC-refutations when we think of our
procedure from Figure 2. In fact, when we express k-dimensional PC-refutations in FPC,
then for the linear equation systems that we need to solve there, we only have a global
polynomial bound on the size of the index I (the set of k-dimensional monomials), but
not on the size of the index J (which indexes the generating set for PCk(P) that we have
computed up to a certain stage, cf. Figure 2). Fortunately, we can use the same strategy that
we used in order to prove Theorem 5.22 in order to convert a (potentially large) generating
set for a given linear space into a small one within FPC.

Vol. 15:1 A FINITE-MODEL-THEORETIC VIEWON PROPOSITIONAL PROOF COMPLEXITY 4:43

Theorem 5.23. For every ` ≥ 1 there exists an FPC-formula ϕ with O(`) variables such
that for every structure A which contains an `-cocyclic matrix M : I × J → F over a finite
field F, the formula ϕ defines in A a matrix ϕA : I×(I×|I|)→ F such that im(ϕA) = im(M).

Proof. The proof is analogous to our proof of Theorem 5.22.

Corollary 5.24. For every ` ≥ 1 there exist FPC-formulas with O(`) variables such that
for every structure A which contains an `-cocyclic linear equation system M · x = b for
M : I × J → F and b : I → F over a finite field F, the formulas either define a matrix
N : J × K → F and a J-vector v : J → F such that im(N) + v is the solution space of
M ·x = b where K ∈ {I×|I|, J ×|J |} and |K| = min(|I|2, |J |2), or, in case that the solution
space is empty, they define v = ∅.

5.7. Cocyclic PC-Refutations over Finite Fields in FPC. We can finally come to our
main result of this section. We show that FPC can express k-dimensional PC-refutations
over finite fields F of characteristic q if the inputs are polynomial equation systems that are
interpreted in a class of (`, p)-cyclic structures, where q 6= p, using only O(`) variables. As
the prototype example, this situation occurs whenever we interpret polynomial equation
systems over a field F of characteristic char(F) = q in (disjoint unions) of CFI-structures
A ∈ CFI [F ; p] over Fp. For the proof, recall that for an FPC-interpretation I, we denote by
Norm(I) its normal form according to Theorem 5.17.

Theorem 5.25. Let Q (P be a (non-trivial) set of primes. Let I(~x) be an FPC-
interpretation which maps τ -structures to polynomial equation systems over finite fields F
of characteristic q ∈ Q. Then for every ` ≥ 1, k ≥ 2, and p ∈ P, p 6∈ Q, there exists an
FPC-formula ϕ with O(k · `) many variables such that for every (`, p)-cyclic τ -structure A
and ~a ∈ dom(A, ~x) we have that A |= ϕ(~a) if, and only if, the polynomial equation system
I(A,~a) has a PC-refutation (over the respective finite field F) of degree at most k.

Proof. Let d ≥ 1 denote the dimension of I(~x) and r ≥ 0 the number of parameters, r = |~x|.
We use Theorem 5.17 to transform I(~x) into normal form Norm(I)(~x). Then, if A is an
(`, p)-cyclic τ -structure and ~a ∈ dom(A, ~x), then we know that Norm(I)(A,~a) is (` · (d+ r))-
homogeneous and that the automorphism group of Norm(I)(A,~a) is an Abelian p-group.
We conclude, using Theorem 5.16, that Norm(I)(A,~a) is (` · (d + r), p)-cyclic. Note that
d, r are constants which only depend on the fixed interpretation I.

Now, assume that we want to express in FPC, given Norm(I)(A,~a), whether the
contained polynomial equation system P over the finite field F of characteristic q 6= p has
a k-dimensional PC-refutation. In order to do this, we want to express the procedure
from Figure 2 in FPC. Recall that the main (and only) difficulty is to (iteratively) define
solution spaces of linear equation system over F in FPC. However, since P is part of an
(O(`), p)-cyclic structure, all linear equation systems that we have to solve are O(`)-cocyclic
systems. Since we can define the index sets for these systems using O(k) many variables
in FPC (because we basically have to index all degree-k multilinear monomials) it follows
from Corollary 5.24 that solution sets can be defined in FPC using at most O(k · `) many
variables. We can now translate the resulting formulas back via Norm(I) which adds another
constant factor to the number required variables that only depends on I. This concludes
our proof.

4:44 E. Grädel, M. Grohe, B. Pago, and W. Pakusa Vol. 15:1

As we said, in particular, we can apply this result for polynomial equation systems
interpreted in CFI-structures. This will allow us to derive lower bounds for the polynomial
calculus just by using finite-model-theoretic arguments in Section 6.

6. Applications in Proof Complexity

Our model-theoretic characterisations of (bounded-width) resolution and the polynomial
calculus via EFP- and FPC-definability allow us to uniformly (re-)prove many lower bounds
on the complexity of proofs (size and/or width/degree) for families of propositional formulas
using arguments from finite model theory. The basic idea is very simple. We saw that
the amount of certain logical resources that are required to express refutations (that is
the number of variables) matches the complexity of refutations (width of clauses or degree
of polynomials) up to linear factors. It follows that if we exhibit families of propositional
formulas Φn,Ψn that cannot be distinguished in EFP (or in FPC or in Cω

∞ω) using O(k)
variables, then also the corresponding propositional proof systems cannot distinguish between
these formulas using refutations of width k or degree k, respectively. In particular, if one of
the formulas in our family (Φn,Ψn), say Φn, is satisfiable, then there cannot be a refutation
for the indistinguishable formula Ψn (of a certain complexity).

In the conference version of this article [27] we discussed these applications with respect
to the resolution proof system. However, given that we extended our definability results for
the polynomial calculus in this article, we can basically derive the same lower bounds directly
for the full polynomial calculus over the rationals and over finite fields (with the Pigeonhole
principle being the only exception). Clearly, this makes the lower bounds more interesting
and, for conciseness, we therefore restrict our attention to the polynomial calculus here.

6.1. Lower Bounds on Degree and Size of Refutations. In this section we establish
our main tool for proving lower bounds for the polynomial calculus. Recall the notion of
(`, p)-cyclic structures from Section 5.5.

Theorem 6.1. Let F be a finite field or the field of rationals. Moreover, let (Pn) and (Qn)
be two families of polynomial equation systems over F and let I be an FPC-interpretation
that maps τ -structures to polynomial equation systems over F. In addition, let ` ≥ 1 and
let p ∈ P be such that char(F) 6= p and let (An) and (Bn) be two families of (`, p)-cyclic
τ -structures such that for all n ≥ 1:

• I(An) = Pn and I(Bn) = Qn,
• Pn is satisfiable and Qn is not satisfiable,
• An ≡Ω(n) Bn.

Then the following holds:

(1) Let PC-Degree(n) denote the minimal degree required to refute the system Qn using
the polynomial calculus over F. Then PC-Degree(n) ∈ Ω(n).

Moreover, as a consequence of this, the following holds:

(2) Let PC-Size(n) denote the size of a minimal PC-refutation for Qn over F. If the
systems Qn, for n ≥ 1, only contain O(n) many variables, then PC-Size(n) is bounded

from below by 2Ω(n).

Vol. 15:1 A FINITE-MODEL-THEORETIC VIEWON PROPOSITIONAL PROOF COMPLEXITY 4:45

Proof. For any degree k ≥ 1, we know that by Theorem 4.10 (if =Q) or Theorem 5.25 (if F is
finite and of characteristic q 6= p) there exists a Cω

∞ω-formula ϕk (in the case of finite fields,
there even exists an FPC-formula ϕk, but this makes no difference for the argument) with
O(k) many variables (note that ` is fixed) which expresses whether the polynomial equation
systems (Pn), (Qn) have a PC-refutation over F of degree at most k. By translating these
formulas back via the fixed FPC-interpretation I (where we use Norm(I) in case of finite
fields) we obtain Cω

∞ω-formulas ψk with O(k) many variables such that An |= ψk if, and
only if, Pn has a degree k PC-refutation over F, and likewise for Bn and Qn. However, since
Pn is satisfiable it has no such refutation for any degree k ≥ 1. Since An ≡Ω(n) Bn, it thus
follows that for k ∈ Ω(n), also Qn has no such degree k-refutation. This proves our first
claim. The second claim follows from the size-degree trade-off for the polynomial calculus,
see [35, Corollary 6.3].

6.2. Lower Bounds for the Graph Isomorphism Problem. We now discuss the pro-
totype example for the lower bound technique on PC-refutations (Theorem 6.1). Specifically,
we show that the graph isomorphism problem does not allow small PC-refutations neither
over Q nor over finite fields. This result has already been established by Berkholz and Grohe
in [10, 11] by using known lower bounds for the polynomial calculus. Here, we present an
alternative proof of (a generalisation of) their result using only arguments from finite model
theory.

Given two graphs G = (V,E) and H = (W,F) it is easy to express the graph isomorphism
problem for G and H as a polynomial equation system ISO(G,H) over any field F as follows.
We use variables X[v 7→ w], for v ∈ V and w ∈ W , to indicate whether v is mapped to
w by an isomorphism (that we are going to guess as a solution). We include the Boolean
constraints X2−X = 0 as usual, i.e. X[v 7→ w] ∈ {0, 1} for every solution. Then we just have
to express that every vertex v ∈ V is mapped to precisely one w ∈W :

∑
wX[v 7→ w] = 1,

and, dually, that every w ∈ W has precisely one preimage v ∈ V :
∑

vX[v 7→ w] = 1.
Finally we want that edges are preserved. We can achieve this by including for each
v1, v2 ∈ V and w1, w2 ∈W such that (v1, v2) ∈ E if, and only if, (w1, w2) 6∈ F the equation
X[v1 7→ w1] ·X[v2 7→ w2] = 0. It is this (fixed) encoding that Berkholz and Grohe considered
in [10, 11] in order to prove their lower bounds. Interestingly, we can easily lift their result to
a more general setting, namely we can allow arbitrary encodings of the graph isomorphism
problem that are definable in FPC or even in Cω

∞ω and still obtain the same lower bounds.

Theorem 6.2. Let F be the field of rationals or a finite field. Let I be an FPC-interpretation
that maps pairs of graphs (G,H) to polynomial equation systems over F such that I(G,H)
is solvable if, and only if, G and H are isomorphic. Then there exists a sequence (Gn, Hn)
of pairs of non-isomorphic graphs Gn, Hn with bounded degree and of size O(n) such that
PC-refutations for the systems I(Gn, Hn) over F require degree Ω(n).

Proof. Choose p ∈ {2, 3} such that char(F) 6= p. We consider the class of CFI-structures
CFI [F ; p] over Fp. Recall that F = {Fn : n ≥ 1} is a family of 3-regular, connected expander
graphs where Fn has O(n) many vertices. In Lemma 5.3 we observed that we can encode
such CFI-structures as undirected graphs via FPC-interpretations J (with a corresponding
inverse interpretation J −1). Moreover, for a CFI-structure A = CFI [Fn; p;λ] ∈ CFI [F ; p],
the graph J (A) encoding A has degree O(p2) and contains O(p2 ·n) vertices. Since p ∈ {2, 3},
it follows that the graphs J (A) have bounded degree and contain O(n) vertices only.

4:46 E. Grädel, M. Grohe, B. Pago, and W. Pakusa Vol. 15:1

For n ≥ 1 we fix two non-isomorphic CFI-structures An,Bn ∈ CFI [F ; p] with underlying
graph Fn over Fp. We let Gn = J (An) and Hn = J (Bn). We claim that the resulting
sequence (Gn, Hn) satisfies the above claim. To show this we use Theorem 6.1. Let
Pn = I(Gn, Gn) and Qn = I(Gn, Hn). Then we observe that Pn and Qn can be interpreted
in the structures (An,An) and (An,Bn) via (I ◦ J) (where, formally, we need to slightly
modify J to encode ordered pairs of CFI-structures as ordered pairs of graphs). By the CFI-

Theorem 5.6 we know that (An,An) ≡Ω(n) (An,Bn). By Theorem 5.19 and Theorem 5.16,
we know that the structures (An,An) and (An,Bn) are (`, p)-cyclic for some fixed ` ≥ 1.
Moreover, by our assumption on I, the systems Pn are satisfiable and the systems Qn are not
satisfiable. Thus, all preconditions of Theorem 6.1 are met, and the lower bound follows.

Although Theorem 6.2 gives us the desired linear lower bound on the degree of PC-
refutations for the graph isomorphism problem, we can not readily infer the exponential
size lower bound from Theorem 6.1. The reason is that the polynomial equation systems
which encode the graph isomorphism problem might contain more than a linear number of
variables. In fact, the number of variables in the system ISO(G,H) that we defined above
contains a quadratic number of variables. This means that the size-degree trade-off results
for the PC cannot be applied.

However we can fix this as follows. In our proof we used CFI-graphs and these are
graphs of bounded colour class size. Formally, a graph with colour class size k ≥ 1 is a
structure G = (V,E,�) where (V,E) is a graph and where � is a linear preorder on V such
that every class of �-incomparable vertices, that is every colour class, is of size at most k.
In other words, one can think of the vertices of the graph G to be coloured while we only
allow that at most k vertices get the same colour. We write V = V0 � · · · � Vn−1 to denote
that V is linearly ordered by � into n colour classes Vi in the indicated way. We have that
|Vi| ≤ k for every i < n.

For CFI-graphs (that is graphs J (A) for A ∈ CFI [F ; p] and where J is the graph
encoding of CFI-structures from Lemma 5.3) the colour classes are basically given as the
edge classes of the underlying graph plus the additional classes of inner nodes which encode
the CFI-constraints, see our discussion preceding Lemma 5.3. The size of these classes is
at most O(p2). Since in our proof we can restrict to CFI-graphs over the field Fp with
p ∈ {2, 3}, these edge classes are indeed of constant size. Hence, it follows from our proof
above that we can require the family of graphs (Gn, Hn) in Theorem 6.2 to consist of graphs
of bounded colour class size.

Now, restricted to graphs of bounded colour class size, our encoding ISO(G,H) for the
graph isomorphism problem that we introduced above can naturally be simplified resulting
in a polynomial equation system that uses linearly many variables only. To see this, we
consider pairs of graphs G = (V,E,�V) and H = (W,F,�W) of colour class size k ≥ 1 with
the same number of colour classes, that is

V = V0 �V V1 �V · · · �V Vn−1

W = W0 �W W1 �W · · · �W Wn−1.

Then each isomorphism is restricted to map vertices in the i-th colour class Vi in G to the
i-th colour class Wi in H. That means that in our system ISO(G,H) we only need to include
variables X[v 7→ w] for all v ∈ Vi, w ∈ Wi, i < n. Since the colour classes are of constant
size, this means that the resulting system only contains a linear number of variables. Hence,
we obtain the following strengthening of Theorem 6.1 for this setting.

Vol. 15:1 A FINITE-MODEL-THEORETIC VIEWON PROPOSITIONAL PROOF COMPLEXITY 4:47

Theorem 6.3. Let F be the field of rationals or a finite field. Let I be an FPC-interpretation
that maps pairs of graphs (G,H) of bounded colour class size to polynomial equation systems
over F such that I(G,H) is solvable if, and only if, G and H are isomorphic, and, moreover
I(G,H) contains a linear number of variables only (linear with respect to the number of
vertices of G and H). Then there exists a sequence (Gn, Hn) of pairs of non-isomorphic
graphs Gn, Hn with bounded degree, of size O(n), and of bounded colour class size such that

PC-refutations for the systems I(Gn, Hn) over F require degree Ω(n) and size 2Ω(n).

6.3. Monomial-PC versus (Full-)PC over the Field of Rationals. As mentioned
above, in [10] Grohe and Berkholz studied the power of the polynomial calculus with respect
to the graph isomorphism problem. One of their main results is that the monomial-PC
over Q has precisely the same expressive power as the well-known Weisfeiler-Leman graph
isomorphism test which, in turn, has the same expressive power as counting logic (with
respect to isomorphism testing). However, they left open the question of whether the full
polynomial calculus is more expressive than its restricted variant the monomial-PC over Q
with respect to the graph isomorphism problem.

Theorem 6.4 [10]. For all k ≥ 2 and graphs G,H we have that

G 6≡k H if, and only if, G 6≡mon-PCk H

In the above theorem, G 6≡mon-PCk H means that the monomial-PC (over Q) can refute
the system ISO(G,H) using degree at most k. Obviously, this also implies that if G 6≡k H,
then G 6≡PCk H, that is ISO(G,H) can be refuted in the full-PC with degree at most k.
However, it remained open whether the converse holds as well (in particular, it remained
open if the converse holds if we allow to increase the dimension for the Weisfeiler-Leman
algorithm by a constant factor).

Question 6.5 [10]. Is there a function f : N→ N such that for all k ≥ 2 we have

G 6≡PCk H =⇒ G 6≡f(k) H?

It immediately follows from Theorem 4.10 that the answer is affirmative and that we
can choose f to be linear.

Theorem 6.6. There is a linear function f : N→ N such that for all k ≥ 2 we have

G 6≡PCk H =⇒ G 6≡f(k) H.

Proof. Let I be an FO-interpretation which interprets the ISO(G,H)-formulas as polynomial
systems over Q in pairs of graphs (G,H). Let r ≥ 1 be the number of variables in I and let
c ≥ 1 be a constant such that the number of variables in the Cω

∞ω-formulas ϕk, that express
the existence of k-dimensional PC-proofs according to Theorem 4.10, is bounded by c · k.

We claim that G ≡r·c·k H =⇒ G ≡PCk H. So let us assume that G ≡r·c·k H. First
of all it holds that G ≡r·c·k H if, and only if, (G,G) ≡r·c·k (G,H). By the closure of Cω

∞ω
under FO-interpretations, it then follows that ISO(G,G) ≡c·k ISO(G,H). Since ISO(G,G)
is clearly satisfiable and since ϕk cannot distinguish between ISO(G,G) and ISO(G,H) it
follows that there does not exist a degree-k PC-refutation of ISO(G,H). Hence G ≡PCk H
as claimed.

4:48 E. Grädel, M. Grohe, B. Pago, and W. Pakusa Vol. 15:1

This shows that PCk over Q as a graph distinguishing procedure is not substantially
stronger than the k-dimensional Weisfeiler Leman test, and therefore, with respect to the
graph isomorphism problem, mon-PCO(k) and PCO(k) are equally expressive. Generally
speaking, though, PCk and mon-PCk differ in so far as mon-PCk proofs over Q can be
found in polynomial time with the Gröbner basis algorithm (larger coefficients than in the
input are never required), whereas for PCk, this is not the case. In light of Hakoniemi’s
exponential bit-complexity lower bound for PC2 [31], it is in fact plausible that PCk (over
Q) is simply not a polynomial-time proof system, and therefore in the general case strictly
stronger than mon-PCk.

6.4. Constraint Satisfaction Problems. In this section we derive a dichotomy result
for constraint satisfaction problems (CSPs) with respect to refutations in the polynomial
calculus and the (weaker) resolution proof system. Intuitively, what we are going to show is
that each CSP either allows simple proofs of inconsistency, namely such proofs that can be
derived in bounded-width resolution, or it requires proofs of very high complexity, that is
of linear degree and exponential size, even in the much stronger polynomial calculus proof
system.

Let us recall the definition of CSPs. We present the formulation as a homomorphism
problem. Let T be a fixed relational τ -structure (the template). Then the constraint
satisfaction problem associated with T is the class Hom(T) consisting of all τ -structures A
for which there exists an homomorphism h : A→ T. Many combinatorial problems can be
posed as CSPs. On the other hand, the class of all CSPs is limited in a certain sense: a
famous conjecture by Feder and Vardi [23], which was recently confirmed independently by
Bulatov [12] and Zhuk [43], says that for each template T the problem Hom(T) is either
decidable in polynomial time (Ptime) or complete for non-deterministic polynomial time
(NP-complete). We will make use of a similar definability dichotomy for FPC soon.

But before we do this, let us describe a simple algorithm to (approximately) solve
constraint satisfaction problems. This algorithm is known as the k-consistency test and it
can be phrased as follows. Fix a template T and consider an input structure A. Let us denote
by Partk(A,T) the set of all partial homomorphisms p from A to T whose domain dom(p)
is of size at most k (we include the empty homomorphism ∅). The idea is to iteratively
compute restrictions Ti ⊆ Partk(A,T) of Partk(A,T) with respect to the following closure
properties. We set T0 = Partk(A,T). For i ≥ 1 we set

Ti = {p ∈ Ti−1 : for all dom(p) ⊆ S ⊆ A, |S| ≤ k th. ex. q ∈ Ti−1 s.th. p ⊆ q,dom(q) = S,

and for all q ⊆ p we have q ∈ Ti−1}

We output the final set T∞. In other words we iteratively eliminate all partial homomorphisms
which cannot be extended to partial homomorphisms of size at most k with respect to all
possible (consistent) domains, and such partial homomorphisms for which we eliminated a
restriction in the iteration before. The first observation is that if there exists a homomorphism
h : A→ T, then T∞ 6= ∅, because the set of all restrictions of h to partial homomorphisms in
Partk(A,T) will be contained in each Ti. Hence, if T∞ = ∅, then we can correctly conclude
that A 6∈ Hom(T). If, on the other hand, T∞ 6= ∅, then in the general case we must output
“we don’t know”. However, in many cases, depending on the template T, this naive algorithm
will work correctly on all inputs, which means that we have an efficient and simple way to
decide the problem Hom(T).

Vol. 15:1 A FINITE-MODEL-THEORETIC VIEWON PROPOSITIONAL PROOF COMPLEXITY 4:49

Before we come to this, let us observe that it is very easy to express the k-consistency
test using bounded-width resolution. For every p ∈ Partk(A,T) consider a Boolean variable
Xp with the intended meaning that Xp is true if p ∈ T∞. According to the k-consistency
test, we consider the following set of clauses:

• For every p ∈ Partk(A,T), every dom(p) ⊆ S ⊆ A with |S| ≤ k:

Xp →
∨

p ⊆ q ∈ Partk(A,T),
dom(q) = S

Xq.

• For every p ∈ Partk(A,T) and every q ⊆ p:

Xp → Xq.

We obtain a (dual-)Horn-formula which always has the trivial model where we set every
variable to false. Moreover, every non-trivial model is a witness that T∞ 6= ∅. Since in this
case ∅ ∈ T∞, this means that if we add the single clause X∅ to the above formula, then we
obtain a (dual-)Horn-formula which is not satisfiable if, and only if, T∞ = ∅. Moreover, note
that since T is a fixed template, the above formula is of constant width. We conclude that
T∞ = ∅ if, and only if, bounded-width resolution can refute the above formula. It is obvious
that this formula is also interpretable in A using a first-order interpretation.

Theorem 6.7. For every k ≥ 1, the k-consistency test can be expressed in FO(ResO(k)).

Now, what happens if we have a template T for which the k-consistency test is incomplete
for any fixed value of k ≥ 1? In this case the (descriptive) complexity of the problem Hom(T)
is much higher. In fact, it follows from [3] and [8] that in this case, the problem cannot be
defined in FPC. This “definability dichotomy” was first explicitly noted, and refined, by
Dawar and Wang in [19] and in [21]:

Theorem 6.8 [8, 3, 19, 21]. For every template T one of the following is true.

(1) Either there is a k ≥ 1 such that the k-consistency test correctly decides Hom(T), or
(2) there exists a (non-trivial) finite Abelian group G such that the problem of deciding the

solvability of linear equation systems over G with at most three variables per equation,
3LIN(G), reduces to Hom(T) via an FPC-interpretation of linear size (that is the
interpretation only increases the sizes of structures by a constant factor).

Moreover, it is known that the problem of deciding whether two CFI-structures A,B ∈
CFI [F ; p] over the same underlying graphs are isomorphic reduces to 3LIN(Fp) via an FPC-
reduction of linear size. Hence, by applying Theorem 6.1 (and using the same arguments
as in the Section 6.2) we get the following dichotomy for the proof systems resolution and
polynomial calculus.

Theorem 6.9. For every template T one of the following holds.

(1) Either Hom(T) can be decided using bounded-width resolution, or
(2) there exists a finite set of primes P ⊆ P such that for every linear-size FPC-definable

encoding of Hom(T) as a system of polynomial equations P(T) over a field F, which
is either Q or a finite field with char(F) 6∈ P , refutations of P(T) in the polynomial

calculus over F require degree Ω(n) and size 2Ω(n) (where n refers to the size of the input
structures A).

4:50 E. Grädel, M. Grohe, B. Pago, and W. Pakusa Vol. 15:1

For the case of Q, this dichotomy result has been established in [6] via a different proof
strategy. Let us remark that, as a result of our approach, we can formulate our dichotomy
result with respect to every FPC-definable encoding (of linear size if we want to maintain
exponential size lower bounds). Also, to the best of our knowledge, this dichotomy was not
known for the case of the polynomial calculus over finite fields.

7. Discussion: The Power of the Polynomial Calculus and Beyond

The resolution proof system and the polynomial calculus are two important and well-studied
propositional proof systems. In this article we characterised their power from the viewpoint
of finite model theory. We proved that bounded-width resolution (k-Res, k ≥ 3) is complete
for existential fixed-point logic (EFP), that Horn-Resolution (Horn-Res) is complete for
least fixed-point logic (LFP), and that the bounded-degree monomial-PC (mon-PCk) and
the degree-k polynomial calculus over Q with bit complexity nb (PCk,b for k ≥ 2, b ≥ 1)
over Q are complete for fixed-point logic with counting (FPC) under (numerical) first-order
reductions. Moreover, we showed that the degree-k PC over Q without any restriction on the
coefficients (PCk) can be expressed in Cω

∞ω with O(k) many variables. It remains open if
PCk can also be simulated in the weaker logic FPC, or more generally, in Ptime. However,
our result that FPC ≡ FO+(PCk,b), and the fact that the proof system PCk,b is strictly
weaker than PCk, suggests that PCk is really more powerful than FPC.
Interestingly, our Theorem 6.6 implies that for deciding the graph isomorphism problem in
the polynomial calculus, using large coefficients in the refutations does not lead to additional
power compared to the k-dimensional Weisfeiler Leman isomorphism test, which can be
implemented in FPC. This raises the question what precisely are the problems for which
large coefficients in refutations actually take the power of the proof system beyond that of
FPC and PCk,b.

Our method that takes definability as the measure for expressive power yields a much
finer classification compared to the one that we get by using standard complexity-theoretic
notions. Indeed, it is well-known that already 3-Res is Ptime-complete, which means that
all (fragments of) proof systems that we considered here are equivalent from the viewpoint
of (algorithmic) complexity theory. In contrast, as we saw, we obtain a more interesting
landscape if we measure their descriptive complexity instead.

On the other hand, compared to the view of proof complexity, our analysis is much
coarser. For instance, in our framework there is no explicit difference between width-3 and
width-k resolution for any k ≥ 4, while, from the viewpoint of proof complexity, clearly
these systems have different power. The reason for this mismatch is that we allow more
powerful logical reductions (which are still weak from the viewpoint of finite model theory).
We believe that this more general perspective, though not as precise, makes it easier to
pin down fundamental differences between, and weaknesses of, the different (fragments)
of proof systems. For instance, our results show that the resolution proof system cannot
refute the Pigeonhole Principle for any FO-definable encoding, see [27], while the polynomial
calculus over Q allows simple refutations (with respect to a natural encoding). Our results
explain this “counting dichotomy” very clearly: resolution corresponds to EFP, a logic which
lacks counting, and the polynomial calculus over Q to FPC/Cω

∞ω, logics which explicitly
include a counting ability. Moreover, our results highlight that the polynomial calculus has
a severe weakness: it is not able to go beyond FPC (with respect to its bounded-degree

Vol. 15:1 A FINITE-MODEL-THEORETIC VIEWON PROPOSITIONAL PROOF COMPLEXITY 4:51

and bounded bit-complexity Ptime-stratification). Since it is known that FPC fails to
express all Ptime-properties, this implies that there are certain Ptime-properties which do
not have small refutations in the polynomial calculus. The prototype example is solving
linear equation systems over finite fields. We can exploit this connection between FPC and
the polynomial calculus over Q even further to derive yet another characterisation. Indeed,
we can show that linear programming is complete for FPC under (numerical) first-order
reductions. This means that the power of the polynomial calculus over Q corresponds
precisely to the power of linear programming under numerical FO-reductions. This connects
the polynomial calculus with a very natural and significant algorithmic problem in the
setting of finite model theory.

Another interesting outcome of our work are the new finite-model theoretic proofs for
lower bounds on the complexity of refutations in the polynomial calculus. We saw that, using
a uniform finite-model theoretic approach, one can show that many families of propositional
formulas require refutations of exponential size. Remarkably, we could obtain these lower
bounds not only for the polynomial calculus over Q, but also for the polynomial calculus
over finite fields. Also, as a result of our approach, our lower bounds are very robust in the
sense that they do not rely on any specific encoding of a problem as a propositional formula,
but they hold with respect to any (FPC-)definable encoding of the problem. For the case
of the polynomial calculus this implies, for example, that all of the aforementioned lower
bounds also hold for the polynomial calculus with resolution (PCR). This proof system is
nothing more than the polynomial calculus, but we include for any variable X a syntactic
dual variable X̄ together with the axiom 1−X = X̄. Clearly these additional axioms can
be defined in FPC, and so, our results do not change in any way by considering the PCR
instead of the standard PC.

Let us finally take a look at some future work. We observe that in our lower bound
proofs for the polynomial calculus over finite fields we do not require a precise connection
with FPC-definability (in fact, as we saw, such a precise match between FPC and the
polynomial calculus over finite fields does not exist). Indeed, for proving lower bounds it was
sufficient to establish FPC-definability of refutations for families of propositional formulas
that are defined in CFI-structures. We then made use of the fact that the CFI-problem is
hard for FPC which gave us the lower bounds on the proof complexity. Even more general,
we do not need to obtain FPC-definability, but, because of the fact that the CFI-problem is
hard already for finite-variable counting logic Cω

∞ω, it is sufficient to show Cω
∞ω-definability

(recall that Cω
∞ω is a more powerful logic than FPC, so showing definability is easier). We

followed these lines for the case of the polynomial calculus over finite fields in Section 5. For
this, we strongly made use of our key technical results which says that CFI-structures over
expander graphs are FPC-homogeneous. Recall that this means that we can order orbits of
k-tuples in CFI-structures using FPC-formulas with a linear number of variables only.

In fact, we can use this homogeneity result to develop a much more general strategy
for proving lower bounds for certain propositional proof system Prop. As we explain in
the following, in certain situations this result allows us to quantify over refutations in Cω

∞ω.
More precisely, assume that Prop has a stratification Prop = (Propk) along a parameter
k ≥ 1. Moreover, assume that whenever a family of propositional formulas F that is defined
(via a fixed FPC-interpretation) in (pairs of) CFI-structures, has a refutation in Propk,
then it also has a refutation p such that:

4:52 E. Grädel, M. Grohe, B. Pago, and W. Pakusa Vol. 15:1

• p is symmetric, that is invariant under all automorphisms of the underlying CFI-structures,
and
• p can be encoded as an object that is definable in the logic Cω∞ω over the underlying

CFI-structures with O(k) variables,
• given a description of p as above, it can be verified using a Cω

∞ω-formula with O(k) many
variables, that p refutes F .

If these (vaguely formulated) conditions are satisfied, then we can basically apply our
techniques in order to show that certain families of propositional formulas, namely such
formulas which encode the CFI-isomorphism problem, cannot be refuted in Propk for any
sublinear k. At the moment, we work out the details and study to what extent these
conditions can be relaxed.

For now, let us illustrate the usefulness of this approach by means of a simple example.
If we take another look at the paper by Grohe and Berkholz [10], then we observe that they
do, in fact, not only derive lower bounds on the complexity of refutations for the graph
isomorphism problem for the polynomial calculus over Q, but also for a stronger proof
system which is known as the Positivstellensatz (or Sums-of-Squares Proof System). Let
us briefly introduce this system. The setting is the same as for the polynomial calculus
over Q, that is our input is a set P consisting of multivariate polynomials p ∈ R[X], and
our aim is to show that the polynomials in P do not have a common zero. As before we
implicitly assume that the Boolean constraints X2 −X = 0 are contained in P for every
variable X ∈ X .

Let us fix a degree k ≥ 2 which is even. A degree-k Positivstellensatz refutation of a
polynomial equation system P over variables X consists of polynomials fp ∈ R[X] such that∑

p∈P
fp · p = 1 + s,

where s is a sum-of-squares (sos) polynomial, that is s =
∑

i∈I q
2
i for some polynomials

qi ∈ R[X], and such that all polynomials in the above equation have degree at most k. Since
s(a) ≥ 0 for every evaluation a : X → R, the existence of such a refutation clearly proves
that P is inconsistent. Now, as in our description above, assume that we have interpreted
this system in a (pair) of CFI-structures, and let Γ be the corresponding CFI-automorphism
group. Every π ∈ Γ extends (uniquely) to a permutation on X and so it defines a unique
automorphism of R[X]. Moreover, this automorphism of R[X] stabilises P . It follows that if
we have a refutation as above, also∑

p∈P
π(fp) · π(p) = 1 + π(s),

is a refutation. Here we are just saying that refutations are mapped to refutations if we
permute the variables in such a way that the set of given polynomials remains stable.
Clearly, this holds for any reasonable proof system. In particular, note that π(s) is also a
sum-of-squares polynomial (because π is an automorphism of R[X]).

However, in the case of the Positivstellensatz we can go one important step further by
summing up over all refutations that we obtain in this way:

∑
π∈Γ

∑
p∈P

π(fp) · π(p)

 = |Γ|+
∑
π∈Γ

π(s).

Vol. 15:1 A FINITE-MODEL-THEORETIC VIEWON PROPOSITIONAL PROOF COMPLEXITY 4:53

The importance of this equation follows from the fact that the sos polynomial on the
right-hand side is symmetric with respect to Γ. The simple consequence is that whenever
we can derive from P , via a degree-k combination of polynomials, a polynomial 1 + s, where
s is an sos polynomial, then we can also derive from P a polynomial 1 + ŝ where ŝ is a
symmetric sos polynomial (note that sos polynomials are closed under addition).

This already brings us very close to our proof strategy from above: we saw that whenever
there is a degree-k refutation, there is also a symmetric one. Let us now complete our
argument for the case of the Positivstellensatz more explicitly. The most important question
is how we can obtain the symmetric polynomial 1 + ŝ in Cω

∞ω. The key insight is that we
don’t have to bother too much about this, because 1 + ŝ is symmetric. Clearly, we can
describe r = 1 + ŝ as a mapping r : Mk → R where Mk denotes the set of all monomials of
degree at most k. Since r is symmetric, r is a vector with the same entries on all Γ-orbits
on Mk. We now make use of the fact that CFI-structures are FPC-homogeneous. This
allows us to order the Γ-orbits on Mk in FPC using only O(k) many variables. Using this
we can see that we can describe the vector r by using a mapping from an ordered set to R.
This is a quite simple object from the viewpoint of Cω

∞ω as it has nothing to do with the
underlying structure. In particular, we can explicitly quantify over all such mappings, since
we have infinite conjunctions and disjunctions available in Cω

∞ω. The final step is to verify
that, having guessed such a vector r : Mk → R in Cω

∞ω, this vector is indeed a refutation,
that is r = 1 + ŝ for a symmetric sos-polynomial ŝ, and that r can be derived from P using
a degree-k polynomial combination. The latter problem is about solving a linear equation
system over R which can be done Cω

∞ω by what we saw in Section 4 (it is not hard to see
that dealing with real numbers in this context is easy: since we are working in Cω

∞ω and
not in FPC, we can quantify explicitly over (sets of) real numbers that we can use for our
definitions).

The former problem can be reformulated as follows. LetMk/2 denote the set of monomials
over X of degree at most k/2. Let S be the Mk/2 ×Mk/2-matrix over R which is defined
by letting S(m,n) be the leading coefficient of the monomial m · n, m,n ∈Mk/2, in ŝ that
we get when we syntactically expand the sos polynomial ŝ. Then S is symmetric and, as
a consequence of the syntactic form of ŝ (ŝ is an sos polynomial), S can be written as a
sum of matrices vvT where the v : Mk/2 → R correspond to the summands in ŝ. Vice versa,
assume that S can be written in this form. Let z be the Mk/2-vector whose entries are the

monomials m ∈Mk/2, i.e. z(m) = m. Then it is easy to see that zTSz is an sos polynomial.
Hence, ŝ is an sos polynomial if, and only if, the corresponding matrix S can be written as
a sum of matrices vvT for v : Mk/2 → R. This condition is equivalent to saying that S is
positive semi-definite, which, in turn, is equivalent to saying that S has only non-negative
eigenvalues. It is known that the eigenvalues of matrices over Q are definable in FPC,
see [18]. It is easy to adapt this definability result to our setting which shows that the
positive semi-definiteness of S can be certified in Cω

∞ω (using O(k) many variables) as well.
This proof (sketch) shows that all lower bounds for the polynomial calculus that we

obtained in Section 6.1, that is for graph isomorphism refutations and for the CSP dichotomy,
remain valid for the Positivstellensatz. These lower bounds have been known before, but
it is nice to see how easily they can be derived by using our newly developed finite-model-
theoretic tools. Again, let us stress that what makes our arguments particularly simple is
the FPC-homogeneity of CFI-structures. As we saw, this result allows us to quantify over
refutations in Cω

∞ω (assuming that symmetric refutations with certain syntactic properties
exist), so we are only left with the usually much simpler task of verifying such refutations

4:54 E. Grädel, M. Grohe, B. Pago, and W. Pakusa Vol. 15:1

in Cω
∞ω. As indicated above, this line of research is part of on ongoing project where we

explore the power of symmetric proof systems from the viewpoint of finite model theory
more thoroughly, so we defer the details to this upcoming work.

Acknowledgements: We would like to thank Joanna Ochremiak for drawing our at-
tention to a mistake in the previous version of this paper, and Tuomas Hakoniemi for
answering detailed questions on the issue of bit-complexity in the polynomial calculus over
Q.

References

[1] M. Anderson and A. Dawar. On symmetric circuits and fixed-point logics. Theory Comput. Syst.,
60(3):521–551, 2017.

[2] A. Atserias. On sufficient conditions for unsatisfiability of random formulas. J. ACM, 51(2):281–311,
2004.

[3] A. Atserias, A. Bulatov, and A. Dawar. Affine systems of equations and counting infinitary logic.
Theoretical Computer Science, 410:1666–1683, 2009.

[4] A. Atserias and V. Dalmau. A combinatorial characterization of resolution width. Journal of Computer
and System Sciences, 74(3):323–334, 2008.

[5] A. Atserias and E. N. Maneva. Sherali-adams relaxations and indistinguishability in counting logics. In
Innovations in Theoretical Computer Science 2012, Cambridge, MA, USA, January 8-10, 2012, pages
367–379. ACM, 2012.

[6] A. Atserias and J. Ochremiak. Proof complexity meets algebra. In 44th International Colloquium on
Automata, Languages, and Programming, ICALP 2017, volume 80 of LIPIcs, pages 110:1–110:14. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

[7] A. Atserias and J. Ochremiak. Definable ellipsoid method, sums-of-squares proofs, and the isomorphism
problem. In Proceedings of LICS 2018, 2018.

[8] L. Barto and M. Kozik. Constraint satisfaction problems solvable by local consistency methods. J. ACM,
61(1):3:1–3:19, 2014.

[9] P. Beame and T. Pitassi. Propositional proof complexity: Past, present, and future. Current Trends in
TCS: Entering the 21st Century, pages 42–70, 2001.

[10] C. Berkholz and M. Grohe. Limitations of algebraic approaches to graph isomorphism testing. In
Proceedings of ICALP 2015, pages 155–166, 2015.

[11] C. Berkholz and M. Grohe. Linear diophantine equations, group CSPs, and graph isomorphism. In
Proceedings of SODA 2017, pages 327–339, 2017.

[12] A. A. Bulatov. A dichotomy theorem for nonuniform CSPs. In Proceedings of FOCS 2017, pages 319–330.
IEEE Computer Society, 2017.

[13] J. Cai, M. Fürer, and N. Immerman. An optimal lower bound on the number of variables for graph
identification. Combinatorica, 12(4):389–410, 1992.

[14] M. Clegg, J. Edmonds, and R. Impagliazzo. Using the Groebner Basis Algorithm to find Proofs of
Unsatisfiability. In STOC 1996, pages 174–183, 1996.

[15] S. Cook and R. Reckhow. The relative efficiency of propositional proof systems. J. Symbolic Logic,
44:36–50, 1979.

[16] E. Dahlhaus. Skolem normal forms concerning the least fixpoint. In Computation Theory and Logic, In
Memory of Dieter Rödding, volume 270 of Lecture Notes in Computer Science, pages 101–106. Springer,
1987.

[17] A. Dawar. The nature and power of fixed-point logic with counting. ACM SIGLOG News, 2(1):8–21,
2015.

[18] A. Dawar, M. Grohe, B. Holm, and B. Laubner. Logics with rank operators. In Proceedings of LICS
2009, pages 113–122, 2009.

[19] A. Dawar and P. Wang. A definability dichotomy for finite valued CSPs. In Proceedings of CSL 2015,
volume 41 of LIPIcs, pages 60–77. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

Vol. 15:1 A FINITE-MODEL-THEORETIC VIEWON PROPOSITIONAL PROOF COMPLEXITY 4:55

[20] A. Dawar and P. Wang. Lasserre lower bounds and definability of semidefinite programming. CoRR,
abs/1602.05409, 2016.

[21] A. Dawar and P. Wang. Definability of semidefinite programming and lasserre lower bounds for CSPs.
In Proceedings of LICS 2017, pages 1–12. IEEE Computer Society, 2017.

[22] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. 2nd edition, 1999.
[23] T. Feder and M. Y. Vardi. The computational structure of monotone monadic SNP and constraint

satisfaction: A study through datalog and group theory. SIAM J. Comput., 28(1):57–104, 1998.
[24] E. Grädel and S. Hegselmann. Counting in Team Semantics. In Proceedings of CSL 2016, 2016.
[25] E. Grädel, P. Kolaitis, L. Libkin, M. Marx, J. Spencer, M. Vardi, Y. Venema, and S. Weinstein. Finite

Model Theory and Its Applications. 2007.
[26] E. Grädel and G. McColm. Hierarchies in Transitive Closure Logic, Stratified Datalog and Infinitary

Logic. Annals of Pure and Applied Logic, 77:166–199, 1996.
[27] E. Grädel, B. Pago, and W. Pakusa. The model-theoretic expressiveness of propositional proof systems.

In Proceedings of CSL 2017, volume 82 of LIPIcs, pages 27:1–27:18. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2017.

[28] E. Grädel and W. Pakusa. Rank logic is dead, long live rank logic! In Proceedings of CSL 2015, Leibniz
International Proceedings in Informatics (LIPIcs), 2015.

[29] M. Grohe and M. Otto. Pebble games and linear equations. J. Symb. Log., 80(3):797–844, 2015.
[30] M. Grohe and W. Pakusa. Descriptive complexity of linear equation systems and applications to

propositional proof complexity. In Proceedings of LICS 2017, pages 1–12. IEEE Computer Society, 2017.
[31] T. Hakoniemi. Monomial-size vs. bit-complexity in sums-of-squares and polynomial calculus. arXiv

preprint arXiv:2105.07525, 2021.
[32] B. Holm. Descriptive Complexity of Linear Algebra. PhD thesis, University of Cambridge, 2010.
[33] S. Hoory, N. Linial, and A. Wigderson. Expander graphs and their applications. Bulletin of the American

Mathematical Society, 43(4):439–561, 2006.
[34] N. Immerman. Descriptive complexity. Graduate texts in computer science. Springer, 1999.
[35] R. Impagliazzo, P. Pudlák, and J. Sgall. Lower bounds for the polynomial calculus and the gröbner basis

algorithm. Computational Complexity, 8(2):127–144, 1999.
[36] P. G. Kolaitis. The expressive power of stratified programs. Inf. Comput., 90(1):50–66, 1991.
[37] L. Libkin. Elements of Finite Model Theory. 2004.
[38] P. N. Malkin. Sherali-adams relaxations of graph isomorphism polytopes. Discrete Optimization, 12:73–97,

2014.
[39] M. Otto. Bounded Variable Logics and Counting. Springer, 1997.
[40] W. Pakusa. Linear Equation Systems and the Search for a Logical Characterisation of Polynomial Time.

PhD thesis, RWTH Aachen University, 2016.
[41] N. Segerlind. The Complexity of Propositional Proofs. Bulletin of Symbolic Logic, 13(04):417–481, 2007.
[42] J. Torán. On the resolution complexity of graph non-isomorphism. In Proceedings of SAT 2013, volume

7962 of LNCS, pages 52–66, 2013.
[43] D. Zhuk. A proof of CSP dichotomy conjecture. In Proceedings of FOCS 2017, pages 331–342. IEEE

Computer Society, 2017.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

	1. Introduction
	Related work

	2. Preliminaries
	2.1. Finite Relational Structures.
	2.2. Logics without Counting.
	2.3. Logics with Counting.
	2.4. Logical Interpretations and Lindström Quantifiers
	2.5. Representing Propositional Formulas as Relational Structures

	3. Resolution and (Existential) Least Fixed-Point Logic
	3.1. Horn Resolution Captures Least Fixed-Point Logic
	3.2. Bounded-Width Resolution and Existential Least Fixed-Point Logic
	3.3. Simulating Bounded-Width Resolution in EFP

	4. The Polynomial Calculus over the Field of Rationals and Fixed-Point Logic with Counting
	4.1. The Polynomial Calculus
	4.2. Monomial-PC in Fixed-Point Logic with Counting
	4.3. Monomial-PC captures Fixed-Point Logic with Counting
	4.4. FPC-Definability of Refutations in the (Full) Polynomial Calculus
	4.5. Definability of Solution Spaces of Linear Equation Systems over Q

	5. Definability of Polynomial Calculus Refutations over Finite Fields
	5.1. Cai-Fürer-Immerman Construction
	5.2. Symmetries of Cai-Fürer-Immerman-Structures
	5.3. Expander Graphs and CFI-Classes
	5.4. Homogeneity of Cai-Fürer-Immerman-Structures
	5.5. CFI-structures are Cyclic
	5.6. Solving Cocyclic Linear Equation Systems
	5.7. Cocyclic PC-Refutations over Finite Fields in FPC

	6. Applications in Proof Complexity
	6.1. Lower Bounds on Degree and Size of Refutations
	6.2. Lower Bounds for the Graph Isomorphism Problem
	6.3. Monomial-PC versus (Full-)PC over the Field of Rationals
	6.4. Constraint Satisfaction Problems

	7. Discussion: The Power of the Polynomial Calculus and Beyond
	References

