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Abstract—We prove that the solvability of systems of linear
equations and related linear algebraic properties are definable
in a fragment of fixed-point logic with counting that only allows
polylogarithmically many iterations of the fixed-point operators.
This enables us to separate the descriptive complexity of solving
linear equations from full fixed-point logic with counting by
logical means. As an application of these results, we separate
an extension of first-order logic with a rank operator from
fixed-point logic with counting, solving an open problem due
to Holm [21].

We then draw a connection from this work in descriptive
complexity theory to graph isomorphism testing and proposi-
tional proof complexity. Answering an open question from [7],
we separate the strength of certain algebraic graph-isomorphism
tests. This result can also be phrased as a separation of
the algebraic propositional proof systems “Nullstellensatz” and
“monomial PC”.

I. INTRODUCTION

There are two quite different perspectives on this work.
The first is from descriptive complexity and finite model
theory: we prove that the solvability of systems of linear
equations and related linear algebraic properties are definable
in a fragment of fixed-point logic with counting (FPC) that
only allows polylogarithmically many iterations of the fixed-
point operators (POLYLOG-FPC). To place this result, it may
be helpful to view FPC as an approximation of the complexity
class PTIME and the fragment POLYLOG-FPC as the corre-
sponding approximation of the complexity class NC consisting
of all problems solvable in parallel polylogarithmic time. Our
result allows us to separate the descriptive complexity of
solving linear equations from full FPC by logical means. As
an application of these results, we separate an extension of
first-order logic with a rank operator from fixed-point logic
with counting, solving an open problem due to Holm [21].

The second perspective on our work is from graph isomor-
phism testing and propositional proof complexity. Answering
an open question from [7], we separate the strength of certain
algebraic graph-isomorphism tests. This result can also be
phrased as a separation of the algebraic propositional proof
systems “Nullstellensatz” and “monomial PC”.

Maybe the key insight of our paper is that there is a
connection between these two topics and that descriptive
complexity can be used to answer the open problem on the
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graph isomorphism algorithms. In fact, this open problem was
our starting point, and the paper is the result of solving it.

In the following, we present both the descriptive complexity
side and the graph isomorphism/proof complexity side in more
detail, giving context and references.

A. Descriptive Complexity of Solving Linear Equations

Fixed-point logic with counting has played a central role
in descriptive complexity theory ever since Immerman [23]
proposed it as a candidate for a logic capturing polynomial
time. Over the last ten years we have learned that the logic is
significantly more expressive than previously thought, both in
graph theoretic contexts [18], [20], [27] and, quite unexpect-
edly, also in algebraic contexts [3], [12], [21]. A culmination
of the work on definability of algebraic properties is Anderson,
Dawar, and Holm’s [3] result that the solvability of linear
programs is expressible in FPC. Of course this implies that the
solvability of systems of linear equations is also expressible
in FPC. This is not obvious, because typical algorithms like
Gaussian elimination, choosing a pivot element in each step,
cannot be described in a “choiceless” logic like FPC. And
it should be noted that this result only holds over the fields
of characteristic 0 and not over fields of characteristic p ≠ 0,
see [4], [13], [17].

We take a closer look at the logical resources required to
express the solvability of linear equations. Our intuition was
that since the computational complexity of this problem is
in NC, it might be possible to express it in the fragment
POLYLOG-FPC. This turned out to be true. The key step of
the proof is to transform, by a logical interpretation, a given
system of linear equations into an equivalent system where we
can define a linear order on the variables and equations.

We also prove a related, quite powerful, technical result
stating that simultaneous similarity of two sequences of de-
finable matrices can be expressed in counting logic with
polylogarithmic quantifier depth. Very briefly, two matrix
sequences are simultaneously similar if there is a single
similarity transformation which pairwise relates corresponding
matrices in the two sequences.

We can now use an old result due to Immerman [22], [24]
that separates the logics POLYLOG-FPC and FPC (actually,
Immerman works with different logics, but this result follows)
to prove that certain logical systems based on solving systems
of linear equations must be strictly weaker than FPC. As an978-1-5090-3018-7/17/$31.00 ©2017 European Union
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immediate application, this shows that the extension of first-
order logic by a rank operator [13], which expresses the rank
of matrices over the field of rationals, is strictly weaker than
FPC, answering an open question from [21].

B. Algebraic Approaches to Graph Isomorphism

In recent years, graph isomorphism algorithms based on
generic mathematical programming and algebraic techniques
have received considerable attention (e.g. [5], [7], [8], [19],
[30], [31]). The idea is to encode a graph-isomorphism in-
stance into a system of linear or polynomial equations or
inequalities and then to solve this system by standard (linear)
algebraic means. The most basic of these approaches is to
write, for two given graphs, an integer linear program (ILP)
whose solutions correspond to the isomorphisms between
the graphs and then study the LP-relaxation of this ILP.
The solutions to this linear program are known as fractional
isomorphisms. Note that solving the linear program gives us
a sound, but not complete isomorphism test: if there is no
solution, we know that the graphs are not isomorphic; if there
is a solution we know nothing. It follows from a beautiful
result due to Tinhofer [36] via a correspondence between logic
and the so-called Weisfeiler-Leman algorithm due to Immer-
man and Lander [25] that the linear program has a solution
(that is, there is a fractional isomorphism between the two
graphs) if, and only if, the graphs are indistinguishable in the
2-variable fragment of first-order logic with counting. Atserias
and Maneva [5] extended Tinhofer’s result to a correspondence
between the Sherali-Adams hierarchy of increasingly “tighter”
LP-relaxations of the original ILP and the hierarchy of finite-
variable fragments of first-order logic with counting.

In [7], Berkholz jointly with the first author of this paper,
studied an algebraic approach where an instance of the graph
isomorphism problem is encoded by a system of linear and
quadratic equations, which then can be solved by Gröbner
basis techniques. The strength of this approach can best be
studied in the framework of propositional proof complexity,
specifically for the algebraic proof systems polynomial cal-
culus (PC) [11] and Hilbert’s Nullstellensatz [6]. In [7], an
intermediate proof system between Nullstellensatz and PC,
the monomial PC was introduced, and it was shown that this
system precisely characterises the hierarchy of finite-variable
fragments of first-order logic with counting. Here the number
of variables corresponds to the degree of the polynomials used
in a refutation in the proof system (proving that the original
system of equations is not satisfiable). The question whether
the monomial PC is stronger than Nullstellensatz was left
open. Remarkably, this question is equivalent to the question
whether the nonnegativity constraints on all variables in the
linear programs of the Sherali-Adams hierarchy mentioned
above can be omitted. We answer this question by proving
that monomial PC is strictly stronger.

The proof is by reductions to our descriptive-complexity
theoretic results. Finding Nullstellensatz refutations amounts
to solving systems of linear equations and hence can be
expressed in finite-variable first-order logic with counting

and polylogarithmic quantifier depth. Monomial PC has the
strength of full FPC when it comes to distinguishing graphs.
Now we can use Immerman’s result (POLYLOG-FPC < FPC)
to separate the two.

C. Outline

We introduce the polylogarithmic restriction of fixed-point
logic with counting (POLYLOG-FPC) in Section III. Formulas
of POLYLOG-FPC can be translated into equivalent formulas
of counting logic with polylogarithmic quantifier rank (The-
orem III.1). An old result due to Immerman (Theorem III.1)
yields the separation of POLYLOG-FPC from full FPC. After
we discussed the encoding of linear-algebraic objects by
means of finite relational structures in Section IV, we explore
the power of POLYLOG-FPC with respect to linear-algebraic
queries over the complex field in Section V. One of our main
results is that POLYLOG-FPC can define the solvability of
linear equation systems (Theorem V.3). More generally, we
show in Section VI that POLYLOG-FPC can distinguish be-
tween all sequences of matrices which are not simultaneously
unitarily similar (Theorem VI.4). This implies, for instance,
that a polylogarithmic number of iterations of the Weisfeiler-
Lehman method suffices in order to distinguish graphs which
are not cospectral. Finally, we come to the main application of
our POLYLOG-FPC-definability results in Section VII, where
we separate the power of the two propositional proof systems
“Nullstellensatz” and “polynomial calculus” with respect to
the graph (non)-isomorphism problem (Theorem VII.2).

II. PRELIMINARIES

We assume that the reader has a solid background in logic.
To fully understand and appreciate our results, familiarity
with the ideas and techniques of finite model theory will be
necessary (see [15], [24], [29], [16]). We briefly review the
logics most important here.

In this paper, we only consider finite relational structures; a
τ -structure A has a finite universe A and a relation RA ⊆ Ak
for each k-ary relation symbol R in the vocabulary τ . The
class of all (finite) τ -structures is denoted by Str(τ). We fix an
encoding of pairs (A,B) of τ -structures as structures ⟨A,B⟩
of some vocabulary τpair, and we let Pair(τ) denote the class
of all pairs of τ -structures encoded this way. We view graphs
G = (V (G),E(G)) as {E}-structures with universe V (G)
and binary edge relation E(G). We denote the class of all
pairs of graphs, encoded as {E}pair-structures, by GraphPair.

Let us briefly review first-order logic FO. First-order for-
mulas of vocabulary τ , or FO[τ]-formulas, are built from
atomic formulas Rx1, . . . , xk for k-ary R ∈ τ and x = y using
the usual Boolean connectives and existential and universal
quantifiers ranging over the universe of a structure.

We next introduce counting logic C which is the (syntactic)
extension of FO that allows counting quantifiers ∃≥mx (“there
exist at least m values for x”) for each m. Note that C and FO
are equally expressive, because ∃≥mx can be expressed in FO
using m quantifiers and m distinct variables for x. However,
the quantifier rank of formulas in C may be significantly lower
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than that of their equivalent counterparts in FO, because a
counting quantifier ∃≥mx only increases the quantifier rank by
one. The same holds for the number of variables in a formula.
By Ck we denote the fragment of C consisting of all formulas
with at most k (free or bound) variables.

We write A ≡k B if the structures A and B cannot be
distinguished by any sentence in Ck, we write A ≡r B if
both structures cannot be distinguished by any sentence of C
of quantifier rank at most r, and we write A ≡kr B if both
structures cannot be distinguished by any sentence of Ck of
quantifier rank at most r.

Inflationary fixed-point logic IFP is the extension of FO
by a fixed-point operator with an inflationary semantics. To
simplify the presentation, we only consider a special case and
let ϕ(X, x⃗) be a formula that has a k-tuple x⃗ = (x1, . . . , xk)
of free individual variables ranging over the universe of a
structure and a free k-ary relation variable X ranging over k-
ary relations on the universe. (The general case is that ϕ has
additional free variables.) For every structure A, we define a
sequence of relations X(i) ⊆ Ak, for i ∈ N, by X(0) ∶= ∅ and

X(i+1) ∶=X(i) ∪ Jϕ(X(i), x̄)KA for all i ∈ N, (II.1)

where Jϕ(X(i), x⃗)KA denotes the set of all ā ∈ Ak such that
A satisfies ϕ if the relation variable X is interpreted by X(i)

and the individual variables in x̄ are interpreted by ā. Since
we have X(0) ⊆ X(1) ⊆ X(2) ⊆ ⋯ ⊆ Ak and A is finite,
the sequence reaches a fixed-point X(n) = X(n+1), which we
denote by X(∞). We use the following syntax for the ifp-
operator:

[IFPXx̄ .ϕ(x̄)] (x̄), (II.2)

In the structure A, this formula defines the relation X(∞).

Example II.1. The following IFP-formula defines the transi-
tive closure of a binary relation R:

[IFP Txy . (Rxy ∨ ∃z(Txz ∧ Tzy))] (x, y). (II.3)

Fixed-point logic with counting (FPC) is the extension of
inflationary fixed-point logic by counting terms. Formulas
of FPC are evaluated over the two-sorted extension of an
input structure A by a linear order of the size of the input
structure. More precisely, we denote by A# the two-sorted
extension of a τ -structure A = (A,R1, . . . ,Rk) by a linear
order ({0, . . . , n},<) of length n + 1, where n = ∣A∣, i.e.
the two-sorted structure A# = (A,R1, . . . ,Rk,{0, . . . , n},<)
where the universe of the first sort (also referred to as vertex
sort) is A and the universe of the second sort (also referred
to as number sort or counting sort) is {0, . . . , n}.

For both the vertex and the number sort we have a col-
lection of typed first-order variables. We also allow relation
variables X of mixed types, i.e. a relation variable X of type
(k, `) ∈ N × N ranges over relations R ⊆ Ak × {0, . . . , n}`.
In particular, we allow fixed-point operators over relations of
mixed type. For example if X is of type (k, `) ∈ N ×N, then
[IFPXx̄ .ϕ(x̄)] (x̄) is a formula of FPC where the tuple of
variables x̄ = x1, . . . , xk+` has to be compatible with the type

of the relation symbol X , that is x1, . . . , xk are vertex variables
and xk+1, . . . , xk+` are number variables. To relate the vertex
and the number sort, fixed-point logic with counting allows
the formation of counting terms to define sizes of sets. More
precisely, for each formula ϕ we can form a counting term
s = [#x .ϕ] whose value sA ∈ {0, . . . , n} in a structure A of
size n is the number of elements a ∈ A such that A ⊧ ϕ(a).

Logical interpretations: The logical counterpart of the
notion of (algorithmic) reductions is the notion of logical
interpretations. Basically, an interpretation I transforms each
structure A into a new structure B = I(A) and this trans-
formation is defined by formulas in some logic L. For the
applications in this paper it suffices to give a formal definition
for the case L = FO.

Let σ, τ be vocabularies with τ = {S1, . . . , S`} where Si is
an si-ary relation symbol. An FO-interpretation of Str(τ) in
Str(σ) is a tuple

I = (ϕδ(x̄), ϕ1(x̄1, . . . , x̄s1), . . . , ϕ`(x̄1, . . . , x̄s`)),

where ϕδ, ϕ1, . . . , ϕ` ∈ FO(σ), and where x̄, x̄1, . . . are tuples
of pairwise distinct variables of the same length d ≥ 1 (I is
then called a d-dimensional interpretation). Let FO[σ → τ]
denote the set of FO-interpretations of Str(τ) in Str(σ). The
quantifier rank of I is the maximal quantifier rank of the first-
order formulas ϕδ, ϕ1, . . . , ϕ`.

With every d-dimensional interpretation I ∈ FO[σ → τ]
we associate a mapping I ∶ Str(σ) → Str(τ) as follows. For
A ∈ Str(σ) we define the τ -structure I(A) = B ∈ Str(τ) over
the universe B = {b̄ ∈ Ad ∶ A ⊧ ϕδ(b̄)} by setting

SB
i = {(b̄1, . . . , b̄si) ∈ Bsi ∶ A ⊧ ϕi(b̄1, . . . , b̄si)}

for each Si ∈ τ .
The notion of an algorithmic reduction is the central tool in

complexity theory to determine the relative algorithmic com-
plexity between problems. Analogously, one can use logical
interpretations to analyse the relative descriptive complexity
between problems. In particular, just as in the case of com-
plexity classes, many logics are closed under certain notions
of interpretations in a way similar as stated in the following
lemma for counting logic and FO-interpretations.

Lemma II.2. Let I ∈ FO[σ → τ] be a first-order interpreta-
tion from Str(τ) in Str(σ) of dimension d ≥ 1 and quantifier
rank r ≥ 0. For every sentence ψ ∈ C of counting logic of
vocabulary τ with quantifier rank at most ` ≥ 1 we can find a
sentence ψI ∈ C of vocabulary σ with quantifier rank at most
r + d ⋅ ` such that for every σ-structure A we have A ⊧ ψI if,
and only if, I(A) ⊧ ψ.

III. THE POLYLOGARITHMIC FRAGMENT OF FIXED-POINT
LOGIC WITH COUNTING

We introduce a restriction of fixed-point logic with count-
ing where we bound the iterations of fixed-point operators
by a polylogarithmic function. While fixed-point logic with
counting (FPC) is tailored to expressing polynomial-time
properties of finite structures, this polylogarithmic variant
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(POLYLOG-FPC) is defined as a counterpart of the com-
plexity class NC to capture problems which are efficiently
parallelisable. To get more intuition, recall that Anderson and
Dawar proved that FPC can express precisely those properties
of finite structures that can be decided by uniform families
of symmetric circuits of polynomial size [2]. The idea of
POLYLOG-FPC is to capture those properties of finite struc-
tures which can be decided by uniform families of symmetric
circuits of polynomial size and of polylogarithmic depth.

To obtain polylogarithmic fixed-point logic with count-
ing, denoted by POLYLOG-FPC, we specify polylogarithmic
bounds for the fixed-point operators in the formulas of FPC.
More specifically, we use fixed-point operators only in the
form [IFP≤log

r(n)Xx̄ .ϕ(x̄)] (x̄), for a constant r ≥ 1. The
semantics of this formula is determined as above except for
that we stop the inflationary evaluation of the fixed point after
at most logr(n) steps (no matter of whether the inflationary
fixed point was reached). That is, the formula defines the
relation X(⌈logr(n)⌉), as defined in (II.1).

Many natural fixed-point processes converge after a polylog-
arithmic number of steps, so we have X(⌈logr(n)⌉) =X∞. An
example is the formula of Example II.1 defining the transitive
closure, which converges after a logarithmic number of steps.

It is easy to see that every formula of POLYLOG-FPC can
be evaluated in polylogarithmic parallel time and thus the data
complexity of POLYLOG-FPC is in NC. Conversely, it is not
hard to show that over ordered structures, POLYLOG-FPC can
express all problems that can be solved in NC (we always refer
to the uniform version of NC). In other words, POLYLOG-FPC
captures NC on ordered structures. This even holds in the
absence of counting, since over ordered structures one can
use the fixed-point operators to simulate counting terms.

A. Embedding into Counting Logic

It is known that every formula ϕ ∈ FPC can be translated
into a family of formulas (ϕn)n≥1 ∈ Ck, for some k ≥ 1,
such that for all n ≥ 1, the formula ϕn is equivalent to ϕ on
structures of size at most n, see e.g. [32]. If we apply this
embedding to POLYLOG-FPC, then we obtain formulas ϕn
with polylogarithmic quantifier rank.

Theorem III.1. For every sentence ϕ ∈ POLYLOG-FPC there
are constants c, k, ` ≥ 1 such that for all n ≥ 2 there is a
sentence ϕ∗n ∈ Ck of quantifier rank at most c ⋅ log`(n) that is
equivalent to ϕ on structures of size at most n.

B. Immerman’s Lower Bound on the Quantifier Rank of
Counting Logic

Polylogarithmic fixed-point logic with counting is a strict
fragment of full fixed-point logic with counting. This follows
from an old construction by Immerman [22].

Theorem III.2 ([22], see also [9], [24]). For sufficiently large
m ≥ 1 there are graphs Gm,Hm with the following properties.
(1) ∣Gm∣ = ∣Hm∣ = n, and n <m1+log(m).
(2) Gm ≡m Hm.
(3) Gm ≢3 Hm.

In words, the graphs Gm and Hm cannot be distinguished
by any sentence of counting logic C of quantifier rank at most
m, although these graphs can be distinguished by a sentence
of the same logic when we allow unbounded quantifier rank
and only three variables. Moreover, the size of the graphs Gm
and Hm is quasipolynomial in m.

It follows from Immerman’s result that FPC is more pow-
erful than POLYLOG-FPC. In fact, a property that witnesses
this separation is the graph isomorphism problem over the
class of graphs Gm and Hm from Theorem III.2. More
precisely, the class K = {⟨G,H⟩ ∈ GraphPair ∶ G,H ∈
{Gm,Hm} for some m ≥ 1} is POLYLOG-FPC-definable, but
not Kiso = {⟨Gm,Gm⟩ ∶ m ≥ 1} ∪ {⟨Hm,Hm⟩ ∶ m ≥ 1}. On
the other hand, Kiso is definable in FPC.

To see this, first recall from Theorem III.1 that over
structures of size n every formula of POLYLOG-FPC can be
translated into an equivalent formula in counting logic C with
a polylogarithmic bound on the quantifier rank (the exponent
of the polylogarithmic function is fixed by the POLYLOG-FPC-
formula). The size of the graphs Gm and Hm is quasipolyno-
mial in m. Note that if we apply a polylogarithmic function
to a quasipolynomial function in m, then we obtain a polylog-
arithmic function in m which clearly grows slower than the
linear function m. Hence the resulting sentences are not able
to distinguish between Immerman’s graphs Gm and Hm for
large enough m ≥ 1. On the other hand, it is known that FPC
can express equivalence in three-variable counting logic, see
e.g. [32]. This suffices to distinguish between Gm and Hm.

Corollary III.3. POLYLOG-FPC < FPC.

IV. LINEAR-ALGEBRAIC OBJECTS AS RELATIONAL
STRUCTURES

A central aim of this paper is to study the POLYLOG-FPC-
definability of important linear-algebraic problems, such as
the solvability of linear equation systems, over the field Q
of rationals and the field C of complex numbers. In this
section we discuss how one can encode linear-algebraic objects
such as matrices, vectors, and so on, by finite relational
structures. It will be convenient for us to work over the field
C throughout. However, the input vectors and matrices to our
linear-algebraic problems will always be rationals or Gaussian
rationals, that is, complex numbers with rational real and
imaginary parts. Note that a system of linear equations with
rational coefficients always has a rational solution, and a linear
system whose coefficients are Gaussian rationals has a solution
in the Gaussian rationals.

Complex numbers: We start to explain how to en-
code complex numbers c = Re(c) + i ⋅ Im(c) with
Re(c), Im(c) ∈ Q. Let τlin = {<} and let τC = τlin ⊎
{NRe,DRe,NIm,DIm, SRe, SIm} where < is a binary relation
symbol and where NRe,DRe,NIm,DIm are unary relation
symbols, and where SRe, SIm are nullary predicates. We
consider τC-structures (A,<,NRe,DRe,NIm,DIm, SRe, SIm)
where < is a linear order on A. Clearly, we can uniquely
identify such structures with structures over the universe

Authorized licensed use limited to: Hochschul- und Kreisbibliothek Bonn-Rhein-Sieg. Downloaded on September 27,2024 at 11:46:57 UTC from IEEE Xplore.  Restrictions apply. 



{0, . . . , n} with < being the natural order. The predicates
NRe,DRe,NIm,DIm represent the binary encodings of the
absolute values of the numerators and denominators of the
real and imaginary part of c. For example, the numerator of
the absolute value of the real part is encoded by NRe and is
determined as ∑i∈NRe

2i. The nullary predicates SRe, SIm are
used to encode the signs of Re(c) and Im(c), respectively.
Of course, we require some simple consistency conditions,
for example DRe ≠ ∅ ≠ DIm (non-zero denominators). We
denote by KC the (first-order definable) class consisting of all
τC-structures which encode complex numbers.

Matrices: Formally, matrices M (with complex
coefficients) are mappings M ∶ I × J → C for two non-
empty index sets I, J . In general we do not require that
the index sets I and J are ordered. To stress this fact
we sometimes speak of unordered matrices. To represent
unordered matrices by structures we use the vocabulary
τMat = {I, J,L,<,NRe,DRe,NIm,DIm, SRe, SIm} with unary
relation symbols I, J,L, binary relation symbols <, SRe, SIm

and 4-ary relation symbols NRe,DRe,NIm,DIm. We consider
τMat-structures (A, I, J,L,<,NRe,DRe,NIm,DIm, SRe, SIm)
where < is a linear order on L, where L, I, J ≠ ∅, I∪J∪L = A,
and where for every i ∈ I and j ∈ J , the structure (L,<
,NRe(i, j,−,−),DRe(i, j,−,−),NIm(i, j,−,−),DIm(i, j,−,−),
SRe(i, j), SIm(i, j)) encodes the (i, j)-th entry M(i, j) ∈ C
of the matrix M ∶ I × J → C as a complex number as
explained in the preceding paragraph.

We denote by KMat the (first-order definable) class consist-
ing of all τMat-structures which encode matrices in this sense.
We usually identify matrices with their structural encodings. A
matrix M ∈ KMat, M ∶ I × J → C, is a square matrix if I = J .
We identify (column) vectors with mappings b ∶ I × {0} → C
and row vectors with mappings b ∶ {0} × J → C. In particular
vectors are structures in KMat. We speak of an ordered matrix
M ∈ KMat if I, J ⊆ L, that is if the encoding of M provides a
linear order on the index sets for the rows and columns.

Families of matrices: For the sake of conciseness, we do
not explicitly specify the following encodings. We consider
pairs of matrices compatible with matrix addition, that is pairs
of matrices M ∶ I × J → C and N ∶ I × J → C over the
same index sets I and J . Let τpairMat(+) denote an appropriate
vocabulary to encode such pairs and let KpairMat(+) denote
the class of τpairMat(+)-structures representing such pairs. We
further consider structures which encode pairs of matrices
M ∶ I × J → C and N ∶ J ×K → C which are compatible
with matrix multiplication. Let τpairMat(∗) denote an appropriate
vocabulary to encode such pairs and let Kpair-Mat(∗) be the class
of τpairMat(∗)-structures representing such matrix pairs.

Moreover, we consider (ordered) sequences of square ma-
trices over a common index set, that is sequences of the
form M = (M0, . . . ,Ms−1) where all Mi are square matrices
Mi ∶ I × I → C. All matrices in this sequence are compatible
with matrix addition and multiplication. In particular, since
the sequence is ordered, the product of the sequence is also
well-defined. Let τseqMat denote an appropriate vocabulary to
encode ordered sequences of square matrices and let KseqMat

be the class of τseqMat-structures representing such sequences.
Linear equation systems: We also need an encoding for

linear equation systems with complex coefficients by finite
relational structures. We can represent every such system in
the form M ⋅x = b for an I×J-coefficient matrix M ∶ I×J → C
and an I-vector of constants b ∶ I → C. We already saw above
that we can encode such pairs (M,b) by relational structures.
Hence, we let τles denote an appropriate vocabulary to encode
linear equation systems (M,b) and let Kles be the class of
τles-structures which encode linear equation systems.

V. LINEAR ALGEBRA IN POLYLOGARITHMIC FIXED-POINT
LOGIC WITH COUNTING

We explore the expressive power of POLYLOG-FPC with
respect to queries from linear algebra over the complex field C.
We will see that many non-trivial properties, such as the solv-
ability of linear equation systems and the coefficients of the
characteristic polynomial, can be expressed in POLYLOG-FPC.
Central ideas that underly our approaches have been used, for
example, also by Holm and Laubner [21], [28] in order to
obtain definability results for the stronger logic FPC.

As POLYLOG-FPC captures NC on ordered structures,
we can express every NC-decidable property over the nu-
meric sort in POLYLOG-FPC. For instance, we can define
in POLYLOG-FPC the addition and multiplication of (sets
of) complex numbers (in binary representation). Also, over
ordered inputs, we can define a host of important problems
from linear algebra in POLYLOG-FPC over C and over finite
fields, such as (iterated) matrix multiplication, computing the
coefficients of the characteristic polynomial, computing the
matrix rank, and also deciding the solvability of linear equation
systems, see e.g. [26].

However, this does not mean that the corresponding prob-
lems remain POLYLOG-FPC-definable over unordered inputs.
In fact, Atserias, Bulatov, and Dawar showed that the solv-
ability of linear equation systems over finite fields can not be
defined even in full FPC [4]. Surprisingly, the picture changes
if we consider queries from linear algebra over the complex
field. Here it turns out that the above mentioned queries are
all definable in POLYLOG-FPC also over unordered inputs.

A. Matrix Arithmetic

We first observe that matrix addition can be defined
in POLYLOG-FPC. Consider a pair of matrices (M,N) ∈
KpairMat(+), M ∶ I × J → C and N ∶ I × J → C. Then
we have that (M + N)(i, j) = M(i, j) + N(i, j). Hence,
we only have to express the addition of complex numbers.
As complex numbers are ordered objects this is possible in
POLYLOG-FPC, since POLYLOG-FPC can express every NC-
property of ordered inputs.

For us the most important observation is that the multipli-
cation of two unordered complex matrices is POLYLOG-FPC-
definable. Assume we have a representation of two matrices
(M,N) ∈ Kpair-Mat(∗), M ∶ I × J → C and N ∶ J ×K → C,
compatible for matrix multiplication. Recall that the (i, k)-
th entry of the product (M ⋅ N) is given as M(i, k) =
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∑j∈JM(i, j) ⋅N(j, k). Again, the multiplication of the com-
plex numbers M(i, j) ⋅N(j, k) is definable in POLYLOG-FPC,
because this is an NC-computable function. The interesting
question, however, is how to evaluate the unordered sum of
complex numbers in the above equation. Here we crucially
rely on the counting mechanism of POLYLOG-FPC in order
to reduce this task to the evaluation of an ordered sum
of complex numbers. First we consider the POLYLOG-FPC-
definable linear preorder ⪯ on J that is defined as j ⪯ j′

if (M(i, j) ⋅ N(j, k)) ≤ (M(i, j′) ⋅ N(j′, k)), where ≤ is
the order on C defined as x ≤ y if Re(x) < Re(y) or
Re(x) = Re(y) and Im(x) ≤ Im(y). The resulting equivalence
classes j/∼ ∈ J/∼ consist of elements which contribute the
same complex number to the above sum. If we denote the
sizes of these classes by ∣j/∼∣, then we get

∑
j∈J

M(i, j) ⋅N(j, k) = ∑
j/∼∈J/∼

∣j/∼∣ ⋅M(i, j) ⋅N(j, k).

Since ⪯ induces a linear order on J/∼ and since we can
determine the sizes of the equivalence classes ∣j/∼∣ with
counting terms we have indeed reduced the evaluation of
an unordered sum of complex numbers to the evaluation of
an ordered sum. In this way we obtain the POLYLOG-FPC-
definability of matrix multiplication.

The above generalises for products over ordered sequences
of square matrices. Indeed, since POLYLOG-FPC can ex-
press products of pairs of matrices, we can evaluate in
POLYLOG-FPC products (of polynomial length) using a stan-
dard divide-and-conquer approach.

Let us also mention that the above technique to evaluate
unordered sums of complex numbers in POLYLOG-FPC has
many further applications. For example, it can be used to show
that the trace tr(M) = ∑i∈IM(i, i) of a square matrix M ∈
CI×I is definable in POLYLOG-FPC.

B. Linear Equation Systems over the Complex Field

We describe a new, and surprisingly simple,
POLYLOG-FPC-definable reduction that transforms a
given linear equation system with unordered sets of variables
and equations into an equivalent linear equation system with
ordered sets of variables and equations (over the complex
field C). Since the solvability of linear equation systems
(over the field C) can be decided in NC, it follows from
this reduction that the solvability of an (unordered) linear
equation system over C can be defined in POLYLOG-FPC.

Let M ⋅ x = b be a linear equation system for an I × J-
matrix M over C and an I-vector b over C. The first step
is to transform this system into a (solvability-)equivalent
linear equation system whose coefficient matrix is a Hermitian
matrix, that is a square complex matrix that is equal to its own
conjugate transpose. Recall that the conjugate transpose of a
matrix S ∶ I × I → C is the matrix S∗ which results from the
transpose ST of S by taking the complex conjugates of all
entries, for instance:

( i 1 + i
2 − i 2

)
∗

= ( −i 2 + i
1 − i 2

) .

Let K ∶= I ⊎ J . Then the linear equation system N ⋅ y = c
over C with the Hermitian K ×K-coefficient matrix N and
the K-vector c given as

N = ( 0 M
M∗ 0

) , c = (b
0
) ,

is (solvability-)equivalent to the original system and can easily
be obtained from M ⋅ x = b.

From now on assume that M ⋅ x = b is a linear equation
system over C given by an Hermitian matrix M ∈ CI×I and
an I-vector b ∈ CI . The important consequence of M being
Hermitian is the following well known fact from linear algebra.
Recall that the kernel ker(M) of a matrix M ∈ CI×J is the
set of all c ∈ CJ such that Mc = 0.

Lemma V.1. If M ∈ CI×I is Hermitian, then ker(M) =
ker(M i) for all i ≥ 1.

Proof. This easily follows by induction on i ≥ 1. The case i =
1 is trivial so let i = 2. Clearly, we have ker(M) ⊆ ker(M2)
and in general ker(M) ⊆ ker(M i) for all i ≥ 1. On the other
hand, if M2 ⋅ a = 0, then also M∗Ma = 0 since M = M∗.
Hence, also a∗M∗Ma = 0. This implies that (Ma)∗(Ma) = 0
which in turn implies that Ma = 0 and hence a ∈ ker(M).
For i > 2 we have that M ia = 0 implies M i−1(Ma) = 0.
By induction hypothesis, we have Ma ∈ ker(M), hence a ∈
ker(M2) = ker(M).

We remark that an analogous result for symmetric matrices
over finite fields does not hold. The following lemma is the
key step in our transformation of an unordered system of linear
equations into an ordered system.

Lemma V.2. Let M ∈ CI×I be Hermitian, b ∈ CI , m = ∣I ∣.
The linear equation system M ⋅ x = b is solvable if, and only
if, b ∈ Span(Mb, . . . ,Mmb).

Proof. For the backward direction, note that if b =
∑mi=1 ziM ib ∈ Span(Mb,⋯,Mmb), then c = ∑mi=1 ziM i−1b is
a solution for the system Mx = b.

For the forward direction, assume that Mc = b for a solution
c ∈ CI . The set {b,Mb, . . . ,Mmb} has size m+ 1 and so it is
linearly dependent. Hence, let z0b + z1Mb +⋯ + zmMmb = 0
for a non-zero z = (z0, . . . , zm) ∈ Cm+1. Let i ≥ 0 be minimal
such that zi ≠ 0. If i = 0, then we are done. Otherwise ziM ib+
⋯ + zmMmb = 0 for some i > 0. Now we make use of the
fact that Mc = b. Then the former equation can be rewritten
as ziM i+1c +⋯ + zmMm+1c = 0. We obtain M i+1(zic +⋯ +
zmM

m−ic) = 0. By Lemma V.1 we conclude that M(zic+⋯+
zmM

m−ic) = 0. Again by making use of the fact that Mc = b
we get zib + zi+1Mb + ⋯ + zmMm−ib = 0. Since zi ≠ 0 the
claim follows.

Let N denote the I × {1, . . . ,m}-matrix over C whose i-th
column is the I-vector M ib. By the above, we conclude that
the linear equation system M ⋅x = b is (solvability-)equivalent
to the system N ⋅ y = b whose columns are indexed by the
ordered set {1, . . . ,m}. The lexicographical order induced by
this order on the rows of N is a linear order up to duplicates of
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equations. Hence, we obtain an equivalent system with ordered
sets of variables and equations. It follows from our earlier
discussion about the POLYLOG-FPC-definability of matrix
multiplication that our outlined reduction can be expressed
in POLYLOG-FPC. The solvability of the ordered system can
be defined in POLYLOG-FPC since this is an NC-property.

Theorem V.3. There exists a POLYLOG-FPC-sentence ϕ of
vocabulary τles such that for all linear equation systems
(M,b) ∈ Kles we have

(M,b) is solvable ⇔ (M,b) ⊧ ϕ.

For later reference, we also state a version in terms of
counting logic with polylogarithmic quantifier rank.

Corollary V.4. There exists t ≥ 1 such that for all sufficiently
large n ≥ 1 we can find a sentence ϕn ∈ C of vocabulary
τles such that qr(ϕn) ≤ logt(n), and such that for all linear
equation systems (M,b) ∈ Kles of size ∣(M,b)∣ ≤ n we have

(M,b) is solvable ⇔ (M,b) ⊧ ϕn.

C. Coefficients of the Characteristic Polynomial

We next show that also the coefficients of the char-
acteristic polynomial of complex matrices can be defined
in POLYLOG-FPC. This result has many interesting conse-
quences. For instance, it follows that the determinant and the
rank of complex matrices are POLYLOG-FPC-definable.

The definability of the characteristic polynomial for com-
plex matrices has been established in [21] with respect to full
FPC. The idea there is to show that Csanky’s algorithm can be
expressed in FPC. Our observation is that for the simulation
of this algorithm a POLYLOG-FPC-formula suffices.

Let us recall Csanky’s algorithm. For details we refer
to [26]. Let M ∈ CI×I be an I × I-matrix over C. Let n = ∣I ∣.
Then the characteristic polynomial χM of M is

χM = det(x ⋅ idI −M) = s0 ⋅ xn − s1xn−1 + s2xn−2 −⋯ ± sn,

where the coefficients si can be obtained via the following
linear recurrences: s0 = 1, s1 = tr(M), and, more generally,

sk =
1

k
(sk−1 tr(M) − sk−2 tr(M2) +⋯ ± tr(Mk)) ⋯

sn =
1

n
(sn−1 tr(M) − sn−2tr(M2) +⋯ ± tr(Mn)) = det(M).

These relations can be obtained from Newton’s identities for
symmetric polynomials. Now, if we want to define this system
of linear recurrences in POLYLOG-FPC, then we only have to
determine the powers M i of the matrix M for all i ≤ n = ∣I ∣
and then compute the corresponding traces tr(M i), that is
the sums over the diagonal entries of the matrices M i. It
follows from our earlier observations that this is possible
in POLYLOG-FPC. The question remains whether the unique
solution of this system, which is the characteristic polynomial
of the matrix M , can be defined in POLYLOG-FPC. Again,
this follows from the fact that this unique solution can be
computed in NC and the observation that the above system
of linear recurrences is ordered. To see this, we express the

above system as a matrix equation L ⋅ s = c for a lower
triangular matrix L. Then the unique solution of the system is
given as s = L−1c. Hence, in order to compute the solution it
suffices to compute the inverse L−1 of the non-singular lower
triangular matrix L. This can be done in NC by using a divide-
and-conquer strategy based on the following identity which
holds for all non-singular lower triangular square matrices
L ∈ Matn(C) and square matrices A,B,C ∈ Matn/2(C):

for L = (A 0
C B

) , we have L−1 = ( A−1 0
−B−1CA−1 B−1) .

As mentioned before, from this definability result we can
extract POLYLOG-FPC-definability results for the determinant,
the matrix rank, matrix inverses, and so on, via the standard
reductions, see for example [26]. For completeness, we recall
the steps which reduce the computation of the rank of a matrix
M ∈ CI×J to the computation of a characteristic polynomial.
The first step is to obtain a Hermitian matrix. Using similar
arguments as in the proof of Lemma V.1 it is easy to check
that the rank of the matrix M is the same as the rank of the
matrix M∗ ⋅M . Since M∗ ⋅M is Hermitian, we get:

rk(M) = rk(M∗M) = rk ((M∗M)2) .

Finally, for matrices N ∈ CI×I with the property rk(N) =
rk(N2), the matrix rank can be determined using the following
well-known result from linear algebra.

Theorem V.5. Let N ∈ CI×I with ∣I ∣ = n and such that
rk(N) = rk(N2). Then rk(N) = n−k where k ≥ 0 is maximal
such that xk divides the characteristic polynomial χN(x).

D. Application to First-order Rank Logic

In his dissertation [21], Holm introduced an extension of
first-order logic by operators which can compute the rank
of matrices over the rationals Q. He proved that this logic,
denoted by FORQ, is contained in FPC and that over ordered
structures it captures the exact logspace counting hierarchy,
a complexity class introduced by Allender and Ogihara [1]
to capture the (algorithmic) complexity of deciding singular-
ity for integer matrices. Holm leaves open whether FORQ
is a strict fragment of FPC. From our above definability
results it follows that Holm’s logic FORQ is contained in
POLYLOG-FPC. Hence we get the following.

Theorem V.6. FORQ ≤ POLYLOG-FPC < FPC.

VI. SIMULTANEOUS UNITARY SIMILARITY

In this section we review a classical theorem of Specht from
1940 which provides a characterisation for the simultaneous
unitary similarity problem for pairs of ordered sequences of
square matrices (of the same dimension) over the field of
complex numbers. Our motivation is to use this criterion to
show that counting logic with polylogarithmic quantifier rank
can distinguish between all pairs of (non-isomorphic) graphs
which have different linear-algebraic properties over the field
of complex numbers.
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Recall that the set CI×I of all (I×I)-square matrices over C
forms a C-algebra. By GLI(C) we denote the multiplication
group of all non-singular matrices S ∈ CI×I . A non-singular
matrix S ∈ CI×I is called unitary if its inverse is the conjugate
transpose, that is, S−1 = S∗. Two matrices A,B ∈ CI×I are
similar if there exists an invertible matrix S ∈ GLI(C) such
that SA = BS. We consider a refinement of this equivalence
relation and say that two matrices A,B ∈ CI×I are unitarily
similar if we can find a unitary matrix S ∈ GLI(C) such that
SA = BS.

We will show that if two graphs cannot be distinguished by
fixed-point logic with counting with a polylogarithmic number
of iterations, or equivalently, by a formula of counting logic
C of polylogarithmic quantifier rank, then all finite sequences
of matrices definable by a fixed first-order interpretation over
the graphs are (in fact simultaneously) related via a unitary
similarity transformation. This means, in particular, that all of
these matrices are similar.

Example VI.1. As a simple application, where we just need
to look at the adjacency matrices of the graphs, we see that
POLYLOG-FPC can distinguish between graphs which are
not cospectral, that is which have different (multi-)sets of
eigenvalues.

Let s ≥ 1 and letM = (M1, . . . ,Ms) andN = (N1, . . . ,Ns)
denote two sequences of square matrices Mi,Ni ∈ CI×I with
complex coefficients and with the same index sets I . We say
that the sequences M and N are simultaneously unitarily
similar for short s.u.s. , if there exists a single unitary matrix
S ∈ GLI(C) such that SMi = NiS for all 1 ≤ i ≤ s.

To see whether two ordered families of complex matrices
are s.u.s. we make use of the following characterisation by
Specht. Let Σs = {x1, x∗1, . . . , xs, x∗s} denote the alphabet
consisting of the letters xi and x∗i for all 1 ≤ i ≤ s. For a
finite word x ∈ Σ<ω

s over Σs let xM ∈ CI×I denote the matrix
which results from x by replacing all letters xi and x∗i by
the matrices Mi and M∗

i , respectively, and by evaluating the
resulting product. In particular, for the empty word x = ε ∈ Σ<ω

s

we agree to set xM = idI . The matrices xN ∈ CI×I for words
x ∈ Σ<ω

s are defined in the same way.
Two sequences M = (M1, . . . ,Ms) and N = (N1, . . . ,Ns)

of complex matrices Mi,Ni ∈ CI×I are trace equivalent if for
all words x ∈ Σ<ω

s we have tr(xM) = tr(xN ). Moreover, for
k ≥ 1, the sequences M and N are k-trace equivalent if for
all words x ∈ Σ≤k

s we have tr(xM) = tr(xN ).

Theorem VI.2 (Specht’s Theorem [35], [37], see also [34]).
Two sequences M = (M1, . . . ,Ms) and N = (N1, . . . ,Ns)
of complex square matrices Mi,Ni ∈ CI×I are simultaneously
unitarily similar if, and only if, they are trace equivalent.

Specht’s Theorem provides us with a criterion to test
whether a pair of matrix sequences is s.u.s. in POLYLOG-FPC.
Indeed, we only have to verify for every word x ∈ Σ<ω

s whether
tr(xM) = tr(xN ) holds or not. This comes down to defining
products and traces of matrices which, as we saw earlier, we

can do in POLYLOG-FPC. Specifically, we have to express the
following steps in POLYLOG-FPC for every word x ∈ Σ<ω

s :
● first of all, we define the conjugate transposes M∗

i and
N∗
i of all input matrices Mi and Ni, and

● secondly, we determine the products xM and xN speci-
fied by the word x, and

● finally, we compare the traces of xM and xN .
Basically all these steps are expressible in POLYLOG-FPC.
However, there are two obvious problems. The most striking
one is that there infinitely many words x ∈ Σ<ω

s for which
we have to test whether tr(xM) = tr(xN ) holds or not. In
particular, the length of these words x ∈ Σ<ω

s is not bounded
which means that also the sizes of (the representations of)
the entries of the matrices xM and xN can become arbitrarily
large. Fortunately it is not necessary to check all words in Σ<ω

s .
In fact, Pearcy [33] proved that the two sequences M and N
of square matrices are trace equivalent if, and only if, they
are 2n2-trace equivalent where n ≥ 1 denotes the dimension
of the square matrices Mi,Ni, that is size of the index set I .

Theorem VI.3 ([33], see also [34]). Two sequences M =
(M1, . . . ,Ms) and N = (N1, . . . ,Ns) of complex square
matrices Mi,Ni ∈ CI×I of dimension n = ∣I ∣ are trace
equivalent if, and only if,M and N are 2n2-trace equivalent.

This means that we only have to consider products xM
and xN for all words x ∈ Σ≤2n2

s . In particular, the length of
such products is polynomially bounded in the dimension of
the input matrices which also gives us a polynomial bound
on the (representations of the) entries of the matrices xM
and xN . From Section V we know that matrix products of
polynomial length can be evaluated in POLYLOG-FPC. Also
defining traces of matrices is possible in POLYLOG-FPC as
this corresponds to the summation over an (unordered) set of
complex numbers.

Unfortunately, there is a second problem: there still are
exponentially many words x ∈ Σ≤2n2

s which we have to
check. Clearly, we cannot go through all words explicitly
in POLYLOG-FPC. However, since we do not aim for an
POLYLOG-FPC-definability result, this does not cause any
trouble. In fact what we can do is to make use of the embed-
ding of POLYLOG-FPC into counting logic C (Theorem III.1)
which gives us for sequences of matrices M and N of a
fixed size and for every fixed word x ∈ Σ≤2n2

s a sentence in C
with a polylogarithmic quantifier rank that expresses the trace
condition tr(xM) = tr(xN ) for xM and xN . We can then take
the conjunction over all these sentences for x ∈ Σ≤2n2

s , which
does not increase the quantifier rank, to obtain a definition for
the simultaneous similarity of the sequences M and N in C
with polylogarithmic quantifier rank.

Theorem VI.4. There are k, r ≥ 1 such that the follow-
ing holds. Let M = (M1, . . . ,Ms) ∈ KseqMat and N =
(N1, . . . ,Ns) ∈ KseqMat be sequences of complex square
matrices over index sets I and J of the same size, that is
Mi ∈ CI×I and Ni ∈ CJ×J and ∣I ∣ = ∣J ∣, such that the size of
M and N is n (where n ≥ 1 is large enough and measures
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the size of the structures M and N ). If M ≡klogr(n) N , then
M and N are simultaneously unitarily similar.

Theorem VI.4 basically says that in counting logic with
polylogarithmic quantifier rank we can express all linear-
algebraic properties of finite structures which are invari-
ant under unitary similarity (over the complex field). Let
us give a more concrete application. We fix some con-
stant ` ≥ 1. Now consider a sequence of formulas ϕ⃗ =
(ϕ1(x1, . . . , x`, y1, . . . , y`), . . . , ϕs(x1, . . . , x`, y1, . . . , y`)) of
counting logic over graphs. Then this sequence defines in
every graph G = (V,E) a sequence of square matrices
Gϕ⃗ = (Mϕ

1 , . . . ,M
ϕ
s ) with entries {0,1} ⊆ C over the index

set V ` in the obvious way:

Mϕ
i (v̄, w̄) = 1, if, and only if, G ⊧ ϕi(v̄, w̄).

Now what Theorem VI.4 says is that we can find constants
k (the dimension) and r (the polylogarithmic exponent) such
that whenever two graphs G and H of size n are equivalent
with respect to all formulas of k-variable counting logic with
quantifier rank logr(n), then the two sequences of matrices
Gϕ⃗ and H ϕ⃗ are simultaneously unitarily similar.

Finally, let us remark that our POLYLOG-FPC-definability
result in this section does not hold over finite fields. In fact,
over finite fields, similarity of matrices cannot be defined
even in full FPC [4]. Furthermore, quite interestingly, the
criterion of simultaneous similarity of matrices over finite
fields has been used by Dawar and Holm in [14] to define an
isomorphism test which is provably strictly stronger than the
Weisfeiler-Lehman method. Our results in this section show
that this isomorphism test collapses to the usual Weisfeiler-
Lehman method if considered over the complex field.

VII. APPLICATION TO GRAPH ISOMORPHISM TESTING
AND PROOF COMPLEXITY

We now turn to the main application of our definability
results, which on a high level we already described in Sec-
tion I-B. We start by introducing the relevant algebraic proof
systems and the encoding of the graph isomorphism problem.
(For details, we refer to [7] and the references cited there.)

A. Algebraic Proof Systems

Let F be a field (in this paper, F will always be the field
C of complex numbers). We consider polynomial equations
over a set of variables Xj , j ∈ J , ranging over F. We do not
assume to have an ordering on the index set J of variables,
that is we consider polynomial equations over unordered sets
of variables. We denote by F[X⃗] the ring of (multivariate)
polynomials in variables Xj , j ∈ J , and with coefficients from
the field F. For a multi-index α ∶ J → N we let the monomial
Xα be defined as Xα = Πj∈JX

α(j)
j . Then polynomials f ∈

F[X⃗] can be written as f = ∑α fα ⋅ Xα where the fα ∈ F
are coefficients from the field F and such that fα ≠ 0 for
finitely many α only. The degree deg(Xα) of a monomial
Xα is defined as ∣α∣ = ∑j∈J α(j), and the degree deg(f) of a
polynomial f = ∑α fα ⋅Xα is defined as the maximal degree

of a monomial Xα occurring in f with non-zero coefficient
fα ≠ 0. Note that deg(f ⋅g) = deg(f)+deg(g) for all non-zero
polynomials f, g ∈ F[X⃗] ∖ {0}.

A polynomial equation is an equation of the form f = 0 for
a polynomial f ∈ F[X⃗]. For better readability, we usually omit
the equality “= 0” when we specify polynomial equations, that
is we identify polynomials f ∈ F[X⃗] with the corresponding
polynomial equations f = 0. A system of polynomial equations
is a set P = {fi ∶ i ∈ I} consisting of polynomials fi ∈ F[X⃗]
for all i ∈ I where I is an (unordered) index set. A solution
of P is a common zero ā ∈ FJ of all polynomials in P .

In what follows, we only consider systems P = {fi ∶ i ∈ I}
which contain for every variable X = Xj , j ∈ J , the
polynomial equation (X2 −X) = 0. Note that these axioms
(X2 −X) = 0 enforce that each variable X = Xj , j ∈ J , can
only take values 0 or 1.

The algebraic proof systems we shall introduce next can be
used to refute a system P of equations, that is, to prove that
it has no solution.

Nullstellensatz Proof System: This proof system is based
on Hilbert’s Nullstellensatz, an important result from algebra
saying that the non-solvability of a system P = {fi ∶ i ∈ I}
is equivalent to the existence of polynomials gi ∈ F[X⃗], i ∈ I ,
such that ∑i∈I gi ⋅ fi = 1. The polynomials gi are called a
Nullstellensatz refutation for the system P . It can be shown
that by the axioms X2 − X one can restrict to polynomials
gi whose degree is linear in the number of variables. Hence,
Hilbert’s Nullstellensatz can be used to search effectively, but
of course not efficiently, for proofs for the non-solvability
of the polynomial system P . If we want to systematically
search for Nullstellensatz refutations efficiently, that means in
polynomial time, then we have to restrict the search space for
the polynomials gi. The most important approach is to restrict
the degree of the polynomials gi by a constant. Indeed, if we
fix d ≥ 1, then we can check efficiently, namely in time nO(d),
whether there are polynomials gi ∈ F[X⃗] satisfying that

● the degree of all products gi ⋅ fi is bounded by d, and
● ∑i∈I gi ⋅ fi = 1.
Nullstellensatz proofs via linear equation systems: We can

reduce the question of whether a system P of polynomial
equations in n variables has a Nullstellensatz refutation of
degree at most d to the question of solving a system of linear
equations in nO(d). This not only shows that we can find a
refutation of fixed degree d in polynomial time, but also will
enable us to connect Nullstellensatz refutations to definability
in POLYLOG-FPC. The reduction goes back to [10].

As a first step, let us simplify the situation a little bit.
In fact, the axioms (X2 − X) = 0 allow us to restrict to
linearised polynomials. Formally, we define the linearisation
operator Lin ∶ F[X⃗]→ F[X⃗] as the F-linear operator uniquely
determined by Lin(Xα) = Xβ where β(j) = 1 if α(j) > 0
and β(j) = 0 if α(j) = 0. Then Lin respects addition and
F-scalar multiplication, but not multiplication. For example
Lin(X ⋅ (X − 1)) ≠ Lin(X) ⋅Lin(X − 1). However, we obtain
the following weak preservation identity for multiplication.
If f, g ∈ F[X⃗], then Lin(f ⋅ g) = Lin(Lin(f) ⋅ Lin(g)).
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This implies that it always suffices to look for Nullstellensatz
refutations consisting of multilinear polynomials gi.

Let d ≥ 1 be the degree bound and let D denote the set of all
linearised monomials of degree ≤ d. We associate with each
monomial Xα ∈ D the set m ⊆ J of variable (indices) which
occur in Xα, that is m = {j ∈ J ∶ α(j) = 1}. Then ∣m∣ ≤ d
and Xα = Πj∈mXj = Xm. Let us now consider the F-vector
space V = FD with basis D. Then we obtain the obvious F-
vector space isomorphism between the vector space V and
the vector space of all multilinear polynomials f ∈ F[X⃗] with
degree deg(g) ≤ d.

Let gi = ∑α,∣α∣≤d gαi Xα be a polynomial with gαi ∈ F and
such that deg(gi ⋅fi) ≤ d. Then deg(g) ≤ di ∶= d−deg(fi). We
observe that gi ⋅fi = ∑α,∣α∣≤d gαi ⋅Xα ⋅fi and that Lin(gi ⋅fi) =
∑α,∣α∣≤d gαi ⋅ Lin(Lin(Xα) ⋅ Lin(fi)). Altogether, this shows
that there exist polynomials gi ∈ F[X⃗], i ∈ I , with deg(gi ⋅fi) ≤
d and ∑i∈I Lin(gi ⋅ fi) = 1 if, and only if, the polynomial 1
is an F-linear combination of the set of all polynomials GP =
{hmi ∶= Lin(Xm ⋅fi) ∶ i ∈ I,m ⊆ J, ∣m∣ ≤ di}. Note that this set
GP of lifted and linearised polynomials hmi has polynomial
size (for fixed d ≥ 1) and it can easily be constructed from P .
Since we can identify the polynomials hmi with vectors in
V we can search for Nullstellensatz proofs of degree d by
solving a linear equation system. More concretely, if we let
M denote a matrix whose columns are the vectors hmi ∈ V
and if we further let b ∈ V denote the vector corresponding to
the polynomial 1 ∈ F[X⃗], then we have that a Nullstellensatz
refutation from P of degree d exists if, and only if, we find a
linear combination x such that M ⋅ x = b.

The polynomial calculus: The Nullstellensatz proof system
is a “static” system in which we have to find the whole
refutation in a single step. The polynomial calculus (PC) is
a dynamic system which allows us to use polynomials that
we have derived in subsequent derivation steps.

Starting with the axioms in P , one can derive new equations,
according to the following rules:

● Linear combinations. Every F-linear combination of the
derived polynomials can be derived as well.

● Lifting (up to degree d). If we can derive f ∈ F[X⃗], then
we can also derive (Xα ⋅f) for every monomial Xα such
that deg(Xα ⋅ f) ≤ d.

If we can obtain the constant polynomial 1 ∈ F[X⃗] by
iteratively applying these two rules, then a corresponding
derivation is called a PC-refutation (of degree d) for the
non-solvability of our system P . As in the case of the
Nullstellensatz proof system the axioms X2−X = 0 guarantee
that we can always restrict to linearised polynomials when
we consider PC-proofs. If we restrict the lifting rule of the
polynomial calculus to such polynomials f which are either
axioms or monomials, then we obtain the monomial PC. This
propositional proof system lies between Nullstellensatz and
polynomial calculus and was introduced in [7].

Finally, let us remark that also for the PC and the monomial
PC one can efficiently check, namely in time nO(d), whether a
refutation of degree d exists using Gröbner basis computations,
see [11].

Encoding of the graph isomorphism problem: We recall
the encoding of the graph isomorphism problem as a system
of polynomial equations from [7]. Let G = (V,E) and
H = (W,F ) be two graphs. We define a system Piso(G,H)
of polynomial equations which is solvable if, and only if, the
two graph G and H are isomorphic. For every (v,w) ∈ V ×W
we introduce a variable X[v ↦ w]. The idea is that a solution
of Piso(G,H) encodes an isomorphism between the graphs G
and H . This isomorphism is determined in the obvious way:
if the variable X[v ↦ w] is set to one, then v is mapped to w
under this isomorphism. To this end, we include the following
polynomial equations in our system P:

∑
w∈W

X[v ↦ w] − 1 = 0 for every v ∈ V(B1)

∑
v∈V

X[v ↦ w] − 1 = 0 for every w ∈W(B2)

X[v1 ↦ w1] ⋅X[v2 ↦ w2] = 0(ISO)

for every mapping v1v2 ↦ w1w2 that is not a local isomor-
phism.

We include the axioms X[v ↦ w]2 − X[v ↦ w] = 0
for all variables X[v ↦ w] as usual. Then, over fields of
characteristic zero, the equations (B1) and (B2) guarantee that
solutions of Piso(G,H) encode a bijection between the vertex
sets V and W of the graphs G and H , and the equations (ISO)
guarantee that this bijection respects the edge relations. Thus,
the system Piso(G,H) is solvable if, and only if, the graphs
G and H are isomorphic.

The obvious question is: can we find a fixed degree d ≥ 1
such that for all pairs of non-isomorphic graphs G and H we
can prove the non-solvability of Piso(G,H) in the polynomial
calculus with degree d (or maybe even in the Nullstellensatz
proof system or in the monomial PC)? If this would be
true, then we had found an efficient algorithm for the graph
isomorphism problem. Unfortunately, Berkholz and Grohe
obtain linear lower bounds on the degree d which is required
for the polynomial calculus to decide the graph isomorphism
problem [7], [8]. Their lower bounds hold for the PC over all
finite fields and over the rationals (or complex numbers).

However, what Grohe and Berkholz left open in [7] is the
question about the relative expressive power of the three proof
systems (Nullstellensatz, polynomial calculus, and monomial
PC) with respect to the graph isomorphism problem. On the
other hand, they established the following precise correspon-
dence between the monomial PC and counting logic C. Recall
that ≡d denotes equivalence of two structures in the d-variable
fragment Cd of counting logic C.

Theorem VII.1 ([7]). Let G,H be graphs and d ≥ 1. Then
Piso(G,H) has a monomial PC-refutation of degree d if, and
only if, G ≢d H .

B. Lower Bounds on Nullstellensatz Refutations

We now present the main application of our definability
results for polylogarithmic fixed-point logic with counting
which is the following lower bound on the complexity of
Nullstellensatz proofs for the graph isomorphism problem.
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Theorem VII.2. For every r ≥ 1 and for infinitely many n ≥ 1
there exists graphs G,H of size n such that

● Piso(G,H) has no Nullstellensatz refutation of degree at
most logr(n).

● Piso(G,H) has a monomial PC refutation of degree 3.

For d ≥ 1 and for graphs G and H let us write G ≡NST
d H if

the graphs G and H cannot be distinguished in the Nullstel-
lensatz proof system with degree d, that is if one cannot find
a Nullstellensatz refutation of degree d for Piso(G,H).

Lemma VII.3. There is c ≥ 1 such that for all d ≥ 1
we can find a quantifier-free first-order interpretation Id ∈
FO[{E}pair, τles] of dimension c ⋅ d such that for all (G,H) ∈
GraphPair with ∣G∣ = ∣H ∣ we have

G ≡NST
d H ⇔ the linear eq. system Id(G,H) is solvable.

Proof sketch. Let d ≥ 1 be the dimension for the Nullstel-
lensatz proof system. By definition, G ≡NST

d H if, and only
if, Piso(G,H) has no Nullstellensatz refutation of degree d.
As explained in Section VII-A, we can express this as the
solvability problem for a linear equation system over Q (note
that here we have to take the dual system as we want to
capture that Piso(G,H) has no refutation). To obtain this
linear equation system we basically have to lift all axioms in
Piso(G,H) by monomials of degree at most d and linearise the
resulting polynomials. Suppose that G = (V,E), H = (W,F ).

We obtain the following system of linear equations. The
variables are X[v̄ ↦ w̄] for tuples v̄ = (v1, . . . , vk) ∈ V (G)k,
w̄ = (w1, . . . ,wk) ∈ V (H)k, where 1 ≤ k ≤ d and vi ≠ vj ,wi ≠
wj for 1 ≤ i < j ≤ k. The variable X[v̄ ↦ w̄] corresponds to
the multilinear monomial ∏k

i=1X[vi ↦ wi].

∑
w∈W

X[v̄v ↦ w̄w] −X[v̄ ↦ w̄] = 0(LB1)

for every v and v̄, w̄ of length k,0 ≤ k < d

∑
v∈V

X[v̄v ↦ w̄w] −X[v̄ ↦ w̄] = 0(LB2)

for every w and v̄, w̄ of length k,0 ≤ k < d

X[v̄ ↦ w̄] = 0(LISO)

for all v̄, w̄ of length ≤ d such that v̄ ↦ w̄ is not a local
isomorphism.

In the equations (LB1) and (LB2) we also included the case
k = 0, that is, v̄, w̄ are empty tuples. One can read X[()↦ ()]
as a convenient notation for the constant 1. However, it is
better to include X[() ↦ ()] as a new variable and to add
the equation X[() ↦ ()] = 1. The above system of linear
equations is solvable if, and only if, there is no Nullstellensatz
refutation of Piso(G,H) of degree d ≥ 1.

We can easily define this system using a quantifier-free first-
order interpretation of dimension c⋅d (with c ≥ 1 large enough)
in the structure ⟨G,H⟩. Essentially, what we need to define
is the matrix of this system of equations. The columns of this
matrix are indexed by pairs of tuples (v̄, w̄) ∈ ⋃dk=0 V k ×W k.

The rows are indexed by the equations, which we can describe
by sufficiently long tuples of vertices of the two graphs.
Fortunately, the matrix only has entries in {−1,0,1}, which
makes the encoding a bit easier. Details of the interpretation
depend on the exact encoding of the pair (G,H) of graphs as
an {E}pair-structure ⟨G,H⟩ as well as the exact encoding of
matrices, and we leave them to the reader.

In the following it is important to recall that if we in-
terpret a structure B = I(A) in a structure A using a d-
dimensional interpretation I, then the size of B is bounded
by nd where n = ∣A∣. The main ingredient of the proof
of Theorem VII.2 is our definability result in Theorem V.3
showing that POLYLOG-FPC can define the solvability of
linear equation systems over the complex field. From this we
also obtained a definability result for counting logic with poly-
logarithmic quantifier rank (Corollary V.4). Also we make use
of Immerman’s construction to separate the polylogarithmic
fragment of counting logic from the full logic (Theorem III.2).

Proof of Theorem VII.2. Let r ≥ 1 be fixed. We start with Im-
merman’s construction and choose according to Theorem III.2
for large enough m ≥ 1 graphs Gm and Hm of size ∣Gm∣ =
∣Hm∣ = n, with n <m1+log(m), and such that Gm ≡m Hm and
Gm ≢3 Hm. Then by Theorem VII.1 we already know that
Piso(Gm,Hm) has a monomial PC-refutation of degree 3. For
better readability, let d = logr(n).

We now use Lemma VII.3 to find a constant c ≥ 1 and a
quantifier-free first-order interpretation Id of dimension c ⋅ d
which translates each pair of graphs (G∗,H∗), G∗,H∗ ∈
{Gm,Hm}, into a linear equation system Id(G∗,H∗) which
is solvable if, and only if, G∗ ≡NST

d H∗. Note that the size
of this linear equation system is bounded by nc⋅d. Since d
is bounded polylogarithmically in n, and since n is bounded
quasipolynomially in m, we conclude that d is bounded
polylogarithmically in m. Hence the size of the system
Id(G∗,H∗) is bounded quasipolynomially in m.

We now apply Corollary V.4 to obtain sentences ϕm of
counting logic which define the solvability of these linear
equation systems Id(G∗,H∗) with a quantifier-rank which is
polylogarithmically bounded in the size of the linear equation
systems Id(G∗,H∗). Note that by the above observation
it follows that the quantifier rank of the sentences ϕm is
polylogarithmically bounded in m. Using the interpretation
lemma (Lemma II.2) we now translate the formulas ϕm back
into equivalent formulas working over the original pairs of
graphs (G∗,H∗). Since the dimension of the interpretation
Id is polylogarithmically bounded in m this just gives a
polylogarithmic blow-up for the quantifier rank of ϕm. Hence,
altogether we can obtain formulas ψm of counting logic whose
quantifier rank is polylogarithmically bounded in m and such
that (G∗,H∗) ⊧ ψm if, and only if, G∗ ≡NST

d H∗.
Finally, since the graphs Gm and Hm are equivalent with

respect to formulas of counting logic with quantifier rank m
we conclude that for large enough m the formula ψm cannot
distinguish between the pairs (Gm,Gm) and (Gm,Hm).
Since Gm ≡NST

d Gm we conclude that Gm ≡NST
d Hm.
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VIII. CONCLUSION

We studied the expressive power of POLYLOG-FPC which
is the fragment of fixed-point logic with counting (FPC)
with polylogarithmic bounds on the number of fixed-point
iterations. An old construction by Immerman shows that
POLYLOG-FPC is weaker than FPC. Many non-trivial linear-
algebraic properties over C or Q can be expressed in
POLYLOG-FPC, for example the solvability of linear equation
systems. This separates the expressive power of linear equation
systems over Q from full FPC and answers an open question
due to Holm about the power of first-order rank logic over Q.
In fact, our results show that, from the logical perspective,
solving linear equation systems (over Q) is provably simpler
than solving linear programs. We further applied our new
POLYLOG-FPC-definability results to obtain lower bounds on
the complexity of proofs in the Nullstellensatz proof system.
This new, and quite surprising, connection between finite
model theory and proof complexity is fascinating and we aim
to study it in more detail in the future. Let us elaborate on
some open problems.

First of all, many questions remain about the relative
power of the three propositional proof systems Nullstellensatz,
monomial PC, and polynomial calculus, with respect to the
graph isomorphism problem. For instance, we still do not
know whether monomial PC can be separated from the full
polynomial calculus. Can finite model theory also help to
answer this question? Also, it would be interesting to see
in how far our separation results between Nullstellensatz and
polynomial calculus can be transferred to finite fields.

A second line of research concerns the structure of the logic
POLYLOG-FPC. The power of FPC can be characterised in
terms of families of symmetric circuits of polynomial size [2].
We expect that a similar characterisation for POLYLOG-FPC
can be obtained with respect to families of symmetric circuits
of polynomial size and polylogarithmic depth.
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