
Complexity of Alignments on
Sound Free-Choice Workflow Nets

Christopher T. Schwanen1[0000−0002−3215−7251],
Wied Pakusa2[0009−0004−6302−4445], and

Wil M. P. van der Aalst1[0000−0002−0955−6940]

1 Chair of Process and Data Science (PADS),
RWTH Aachen University, Aachen, Germany
{schwanen,wvdaalst}@pads.rwth-aachen.de

2 Federal University of Applied Administrative Sciences, Brühl, Germany
Wied.Pakusa@hsbund.de

Abstract An optimal alignment consists of a minimal number of edit
operations (deletions and insertions) to fit an observed event trace with
a process model. In conformance checking, alignments are used to quan-
tify in how far reality deviates from the predefined business norm and
constitute probably the most important tool. In practice, however, it
has frequently been observed that finding optimal alignments is compu-
tationally expensive. In this paper, we extend the proof of the Shortest
Sequence Theorem for live, bounded, free-choice Petri nets to make it also
applicable to moves in alignments on this model class. This way, we are
able to show that computing alignments on sound free-choice workflow
nets is NP-complete. While this still rules out an efficient algorithm, our
result opens the door for a new set of tools to attack the alignment prob-
lem which go beyond the standard reachability approach used in most
implementations. Eventually, we will demonstrate that soundness alone
is not a sufficient criterion by proving that computing alignments on gen-
eral safe and sound workflow nets is PSPACE-complete and thus indeed
incurring immense algorithmic costs on more general model classes.

Keywords: Process Mining · Conformance Checking · Alignments ·
Computational Complexity · Workflow Nets · Free-Choice Petri Nets

1 Introduction

The goal of conformance checking is to compare the observed behavior of a
process against a reference model, typically given as Petri net or BPMN diagram.
This allows the identification of inefficiencies, regulatory violations, and so on.
As of today, alignments are considered to be the state-of-the-art technique in
conformance checking; we refer to [8] for a thorough introduction to this field.

The system in Figure 1 specifies a process with two observable events a and b
in the form of a Petri net. We view a Petri net as both, a formal model defining
a process, and as a language acceptor. In both cases, we agree on an initial and



2 C. T. Schwanen et al.

pinit

a

t1

p1

p2

a

t2

b

t3

p3

p4

b

t5t4 pfinal

Figure 1: Example of a Petri net (sound free-choice workflow net)

a final marking and consider runs of the model (so called firing sequences) from
the initial to the final marking. For each run, the transition labels form a finite
word, also called a trace. Transitions can also be unlabeled (those are called
silent). The collection of generated words constitutes the language accepted by
the Petri net. For the net in Figure 1, the initial marking is highlighted (one
single token in place pinit) and the intended final marking has a single token in
pfinal . Relative to these markings, the Petri net accepts the words aabb and abab,
but not abaa. The accepted language is (aab|aba)+b.

Dissimilarity is quantified by “aligning” a given trace against the model,
which means that we insert and delete activities into and from the trace until it
fits with the model. The goal is to find an optimal alignment which minimizes the
number of required change operations. This is formalized as follows: we assume
that the business process and the trace are executed and generated concurrently.
While the model evolves from its initial to its final marking, and, concurrently,
the trace from its first to its last letter, there are three different types of moves:

1. the system and the trace take one step synchronously, i.e., the system fires
a transition t labelled with a and the trace moves on via its next letter a;
this is called a synchronous move (a, t);

2. the system fires t, but the trace maintains its state; this corresponds to an
insert operation where the label of t (which might be empty) is inserted into
the trace; such move is called model move and is denoted by (≫, t) where
≫ is a distinguished “no-move” symbol;

3. dually, the model can stay in its current state while only the trace proceeds
one letter further which corresponds to a deletion operation; such steps are
called log moves and can be written as (a,≫).

Figure 2 shows two alignments for a trace w = abaa and the system from
Figure 1. The first row indicates the progress in the trace, while the last two rows
contain the labels and transitions fired by the model. For the first alignment, we
have four insert operations (model moves) including a silent one (t4 is unlabeled,
indicated by τ). The trace generated by the model is abaaabb. The model trace
abab in the second alignment results in one deletion (log move) and one insertion
(model move), which is optimal regarding the number of change operations.

It has frequently been observed that finding optimal alignments is compu-
tationally hard. Given the pivotal role of alignments, this situation calls for a
thorough and systematic analysis of the complexity of the alignment problem. In



Complexity of Alignments on Sound Free-Choice Workflow Nets 3

a b ≫ ≫ a a ≫ ≫

a b a τ a a b b
t1 t3 t2 t4 t1 t2 t3 t5

(a) Four synchronous moves, three model
moves (inserts), one silent model move

a b a ≫ a

a b a b
t1 t3 t2 t5 ≫

(b) Three synchronous moves, one model
move (insert), one log move (deletion)

Figure 2: Two possible alignments for w = abaa

particular, for practical applications it would be beneficial to know which param-
eters of the process model influence the complexity of the alignment problem and,
thus, which algorithmic approaches are most promising on certain inputs. Sur-
prisingly, such an analysis is, to date, still missing. In this work, we make several
important steps towards such a complexity-theoretic classification of alignments.

In [26, 27], we studied the complexity of alignments on process trees. We
showed that the alignment problem is in NP for general process trees and in P
for process trees with unique labels. We now take one step further by considering
live, bounded, free-choice Petri nets, a model class strongly generalizing process
trees, but still known for its good algorithmic properties. Our first main result is
to show that alignments on this class can also be computed in NP (see Section 5).
This is a significant improvement over the case of safe Petri nets where the
alignment problem is PSPACE-complete (see Section 7). Our proof is based on an
extension of the Shortest Sequence Theorem for live, bounded, free-choice Petri
nets [14] by which we can bound the length of an optimal alignment polynomially.
To complement the NP upper bound, we also show NP-hardness via a reduction
from the membership problem for shuffle languages (see Section 5). This gives
NP-completeness for alignments on important model classes studied in process
mining, such as sound free-choice workflow nets or process trees (see Section 6).
Interestingly, for both classes, the reachability problem is known to be in P, which
means that the alignment problem is provably harder (assuming P ̸= NP).

Our second main contribution is to show that the free-choice assumption is
crucial. We prove that on safe and sound workflow nets, the alignment problem is
PSPACE-complete (see Section 7). For this, we significantly extend a construction
for simulating a PSPACE-computation by a live and safe Petri net. This shows
that the alignment problem is indeed intractable on safe and sound workflow
nets, the standard model class used in process mining.

2 Related Work

The groundwork for conformance checking was laid in [24] where metrics based
on a technique known as token-based replay were proposed. Although token-
based replay is efficient from an algorithmic point of view, it fails to provide
accurate results in presence of common model constructs. This is why alignments,
introduced by [3], have replaced token-based replay as “the gold standard” in
conformance checking [9]. An overview of recent developments is given in [8, 9].



4 C. T. Schwanen et al.

It is ubiquitously mentioned that computing alignments (with respect to
the standard algorithms based on A∗) suffers from the so-called state explosion
problem [cf. 30]. In general, it has been recognized that the reachability problem
for Petri nets is a lower bound for the complexity [8, 9]. Most relevant for us are
complexity bounds for classes of safe Petri nets (which means that places can hold
at most one token). For safe Petri nets, it was shown that reachability is PSPACE-
complete [19]. Later on, it turned out that almost all interesting computational
problems on safe Petri nets are PSPACE-hard. A comprehensive overview of
results is given in [10, 17, 18]. Because of the high complexity, more restricted
classes of Petri nets with better algorithmic properties have been studied as well.
Here, free-choice Petri nets form the most relevant example on which important
computational problems become tractable, see [13].

Different algorithmic approaches were investigated to improve scalability of
alignment computations. E.g., in [5] the authors use symbolic representations of
the (exponential) state space to reduce the memory footprint of the alignment
computation. Another common approach is to encode alignments into related
problems for which well-adapted algorithms exists. This idea is investigated, for
example, in [21] where alignment computations are represented as a planning
problem. Another angle is to improve heuristics for the A∗-algorithm: in [15],
for instance, Petri net theory and linear programming are combined to improve
the runtime on several benchmarks significantly. Besides this, also approximative
algorithms have been proposed, see, e.g., [28] for a scheme based on integer linear
programming and [29] for a genetic method to compute optimal alignments.

However, these studies do not provide guarantees and we did hardly find any
source that investigates the algorithmic complexity of alignments. A statement
on specific model classes is provided in [6, 7]. There, the authors showed that
computing alignments is NP-complete on the class of safe Petri nets when the
length of permissible alignments is limited. To the best of our knowledge, the
approach in [27] was the first to truly break the PSPACE-barrier when computing
alignments on the class of process trees. When further restricting process trees
to only have unique labels, the complexity drops from NP even further to P
[26]. Beyond that, we are not aware of any results studying the complexity of
alignments over different process models.

Finally, we like to mention work on the related error correction problem
for regular languages. A first efficient algorithm for this problem was given by
Wagner in the 1970s [31], a complexity-theoretic analysis can be found in [23].
For context-free grammars (CFGs), a polynomial-time error-correction algorithm
can be found in [4]. Our work might be interesting for the error correction prob-
lem as well, as it provides a new perspective on the complexity of the problem
for other presentations of regular languages.

3 Preliminaries

Let N := {0, 1, 2, . . .} denote the natural numbers. For any tuple a, πi(a) denotes
the projection on its ith element, i.e., πi : A1×· · ·×An → Ai, (a1, . . . , an) 7→ ai.



Complexity of Alignments on Sound Free-Choice Workflow Nets 5

Definition 1 (Multiset). A multiset M over a set A is a function M : A → N;
thus, for any a ∈ A, M(a) indicates how often a is contained in the multi-
set M . The set of all multisets over A is given by NA. We also use the notation[
aM(a)

∣∣ a ∈ A
]

for a multiset M ∈ NA. Any set A can also be considered a mul-
tiset by assigning 1 to each item. For multisets M,M ′ ∈ NA, we use the standard
notation for functions, e.g., M + M ′, M ≤ M ′, etc. The support of a multiset
M ∈ NA, denoted by ⟨M⟩, is the set of distinct elements contained in M , i.e.,
⟨M⟩ := {a ∈ A |M(a) > 0}. For multisets M ∈ NA and M ′ ∈ NB over two sets
A and B, M ⊕M ′ denotes their addition after extending them by 0.

Definition 2 (Sequence, Permutation). Sequences with index set I over a
set A are denoted by σ = ⟨ai⟩i∈I ∈ AI . The length of a sequence σ is written as
|σ| and the set of all finite sequences over A is denoted by A∗. For a sequence
σ = ⟨ai⟩i∈I ∈ AI , the notation

∑
σ is used as a shorthand for

∑
i∈I ai. Given

two sequences σ and σ′, σ · σ′ (or σσ′ in short) denotes the concatenation of
the two sequences. The restriction of a sequence σ ∈ A∗ to a set B ⊆ A is the
subsequence σ|B of σ consisting of all elements in B. A function f : A → B can
be applied to a sequence σ ∈ A∗ given the recursive definition f(⟨⟩) := ⟨⟩ and
f(⟨a⟩ · σ) := ⟨f(a)⟩ · f(σ). The multiset representation of a sequence σ ∈ A∗,
denoted by σ, is defined by σ(a) :=

∣∣σ|{a}∣∣ for every a ∈ A, and ⟨σ⟩ provides
the support of σ. A sequence σ′ ∈ A∗ is a permutation of σ if and only if σ′ = σ.

Definition 3 (Alphabet). An alphabet Σ is a finite, non-empty set of labels.

Definition 4 (Petri Net). Let Σ be an alphabet. A Petri net N is a bipartite
directed graph N = (P, T, F, ℓ) where P and T , P ∩ T = ∅ are disjoint finite
sets of vertices and F ⊆ (P × T ) ∪ (T × P ) is the set of arcs. In a Petri net, P
is called the set of places, T the set of transitions, and F the flow relation. In
addition, ℓ : T → Σ ∪ {τ} is a labeling function. A transition t ∈ T is labeled if
ℓ(t) ∈ Σ and it is silent if ℓ(t) = τ . Given a vertex v ∈ P ∪ T , its pre-set •v and
post-set v• are defined by •v := {u ∈ P ∪ T | (u, v) ∈ F} and v• := {u ∈ P ∪ T |
(v, u) ∈ F}. With regard to a place (transition), its pre- and post-set are also
called input and output transitions (places).

Definition 5 (Marking, System, Firing Rule). Given a Petri net N =
(P, T, F, ℓ), a marking M ∈ NP is a multiset where M(p) is the number of
tokens at place p ∈ P . A place p ∈ P is marked at M if M(p) > 0. The pair
(N,M) of a Petri net N = (P, T, F, ℓ) and a marking M ∈ NP is called a system.
A transition t ∈ T is enabled in M , denoted by (N,M)[t⟩, if and only if each of
its input places p ∈ •t is marked, i.e., ∀p ∈ •t : M(p) > 0. An enabled transition
may fire, denoted by (N,M)[t⟩(N,M ′), and firing results in a new marking M ′:

M ′(p) =


M(p)− 1 if p ∈ •t ∧ p /∈ t•,
M(p) + 1 if p /∈ •t ∧ p ∈ t•,
M(p) otherwise.

A sequence of transitions σ = ⟨ti⟩ni=1 ∈ T ∗ is called a firing sequence of
(N,M) if for every transition ti of the sequence holds that (N,Mi−1)[ti⟩ and



6 C. T. Schwanen et al.

(N,Mi−1)[ti⟩(N,Mi) where M0 = M and Mn = M ′. Firing such a sequence
is denoted by (N,M)[σ⟩(N,M ′). The empty sequence ⟨⟩ is always enabled and
firing the empty sequence leaves the marking unchanged, i.e., (N,M)[⟨⟩⟩(N,M).
A marking M ′ is reachable if a firing sequence σ ∈ T ∗ exists such that M ′ is the
resulting marking, i.e., (N,M)[σ⟩(N,M ′). The set of all reachable markings of
(N,M) is denoted by [N,M⟩ :=

{
M ′ ∈ NP

∣∣ ∃σ ∈ T ∗ : (N,M)[σ⟩(N,M ′)
}
.

Definition 6 (Boundedness, Safeness). Given a k ∈ N, a system (N,M0)
with N = (P, T, F, ℓ) is k-bounded if k is a bound for any reachable marking,
i.e., ∀M ∈ [N,M0⟩ : ∀p ∈ P : M(p) ≤ k. (N,M0) is safe if it is 1-bounded.

Definition 7 (Accepting System). An accepting system (N,Minit ,Mfinal)
extends a system (N,Minit), N = (P, T, F, ℓ), with a final marking Mfinal ∈ NP .

Definition 8 (Complete Firing Sequence, Trace, Behavior and Lan-
guage of a System). Let S = (N,Minit ,Mfinal) be an accepting system with
N = (P, T, F, ℓ) and ℓ : T → Σ ∪ {τ} over Σ. A firing sequence σ ∈ T ∗ is a
complete firing sequence of S if (N,Minit)[σ⟩(N,Mfinal). The set of complete
firing sequences ϕ(S) := {σ ∈ T ∗ | (N,Minit)[σ⟩(N,Mfinal)} is the behavior of S.
Considering the labels of a complete firing sequence, this is referred to as a trace
σ ∈ Σ∗. The set of all traces L(S) := {ℓ(σ)|Σ | σ ∈ ϕ(S)} is the language of S.

Definition 9 (Easy Soundness). An accepting system (N,Minit ,Mfinal) is
easy sound if and only if the final marking is reachable, i.e., Mfinal ∈ [N,Minit⟩.

4 Alignments

Alignments juxtapose an observed trace with a complete firing sequence of the
process model. For this, activities in the trace are compared in pairs with the
transitions of the complete firing sequence. These pairs are called moves:

Definition 10 (Moves). Let Σ be an alphabet and S = (N,Minit ,Mfinal) an
accepting system with Petri net N = (P, T, F, ℓ) and labeling function ℓ : T →
Σ ∪ {τ}. Furthermore, let ≫ be a distinguished “no move” symbol. A move is
an ordered pair (a, t) ∈ (Σ ∪ {≫}) × (T ∪ {≫}). We distinguish between three
types of legal moves: The move (a, t) is a

– synchronous move if a ∈ Σ, t ∈ T , and a = ℓ(t),
– log move if a ∈ Σ and t = ≫,
– model move if a = ≫ and t ∈ T .

All other moves are considered illegal. A model move (≫, t) is a silent move if
ℓ(t) = τ . The set LMΣ,S denotes all legal moves between Σ and S:

LMΣ,S := {(a, t) ∈ Σ× T | a = ℓ(t)} ∪ Σ× {≫} ∪ {≫} × T.

An alignment is a sequence of legal moves whose first components form the
observed trace and whose second components form a complete firing sequence
of the process model (ignoring the ≫-symbol and τ -labels), formally:



Complexity of Alignments on Sound Free-Choice Workflow Nets 7

Definition 11 (Alignment). Let Σ be an alphabet, σ ∈ Σ∗ a trace, and S =
(N,Minit ,Mfinal) an accepting system with N = (P, T, F, ℓ) and ℓ : T → Σ∪{τ}.
An alignment γ ∈ LMΣ,S

∗ between σ and S is a sequence of moves such that
σ = π1(γ)|Σ and π2(γ)|T ∈ ϕ(S). Γσ,S denotes all alignments between σ and S:

Γσ,S := {γ ∈ LMΣ,S
∗ | π1(γ)|Σ = σ ∧ π2(γ)|T ∈ ϕ(S)}.

In easy-sound systems, a trivial alignment always exists: first generate the
input trace via log moves, and then generate a firing sequence from the initial
to the final marking via model moves. This trivial alignment corresponds to
the worst possible scenario: the model and the trace have nothing in common.
However, we are really interested in optimal alignments which maximize the
synchronization between the trace and the model. This is formalized by assigning
costs to moves and then finding an alignment with minimal costs.

Definition 12 (Alignment Cost). Let S = (N,Minit ,Mfinal) be an easy-
sound system, i.e., ϕ(S) ̸= ∅, with N = (P, T, F, ℓ) and ℓ : T → Σ ∪ {τ}, and
let LMΣ,S be the set of all legal moves between Σ and S. An alignment cost
function is a function c : LMΣ,S → Q≥0. The cost of an alignment γ ∈ LMΣ,S

∗

is given by the sum of costs of each move in the sequence, i.e.,
∑

c(γ).
The standard cost function c : LMΣ,S → Q≥0 is defined as

(a, t) 7→ c(a, t) :=

{
0 a ∈ Σ ∧ t ∈ T ∧ a = ℓ(t), or a = ≫∧ ℓ(t) = τ,
1 a ∈ Σ ∧ t = ≫, or a = ≫∧ ℓ(t) ∈ Σ.

Definition 13 (Optimal Alignment). Let S be an easy-sound system, i.e.,
ϕ(S) ̸= ∅, and let c : LMΣ,S → Q≥0 be an alignment cost function. Given a trace
σ ∈ Σ∗, an alignment γopt ∈ Γσ,S is optimal if and only if no other alignment
between σ and S has lower costs, i.e.,

∑
c(γopt) = minγ∈Γσ,S

{
∑

c(γ)}.

Of course, computing an optimal alignments is a functional optimization
problem, the corresponding decision problem is the following:

Problem 1 (Alignment (Align)).
Input: An alphabet Σ, an easy-sound system (N,Minit ,Mfinal) with Petri

net N = (P, T, F, ℓ) and labeling function ℓ : T → Σ ∪ {τ}, a trace σ ∈ Σ∗ over
Σ, and a cost function c : LMΣ,S → Q≥0.

Question: Given k ∈ Q≥0, is there an alignment γ ∈ Γσ,S with
∑

c(γ) ≤ k?

For our purposes the (binary) decision problem Align is more adequate,
since we are interested in classifying its computational complexity. However, it
is also clear that an algorithm for the decision version can be transformed into
an algorithm for the functional variant by performing a binary search on the
cost threshold k. This only requires a polynomial number of calls to the decision
algorithm and does not change the complexity class of the problem.



8 C. T. Schwanen et al.

5 Align on Live, Bounded, Free-Choice Systems

First, we turn our attention to live, b-bounded, free-choice systems (lbfc-systems,
for short). These nets have been thoroughly studied in Petri net theory and en-
joy nice structural properties [cf. 13]. In our main result (Theorem 4), we show
that for each trace and each lbfc-system there exists an optimal alignment of
polynomial length. From this, we obtain a simple guess-and-verify NP-algorithm
for the alignment problem which reduces the complexity from PSPACE to NP.

Definition 14 (Live, b-Bounded, Free-Choice (lbfc) Systems). A sys-
tem (N,M0) over N = (P, T, F, ℓ) is a live, b-bounded, free-choice system (lbfc-
system) if and only if it is

live, if: ∀M ∈ [(N,M0)⟩,∀t ∈ T : ∃M ′ ∈ [(N,M)⟩ : (N,M ′)[t⟩
b-bounded, if: ∀M ∈ [(N,M0)⟩,∀p ∈ P : M(p) ≤ b

free-choice, if: ∀(s, t) ∈ F : •t× s• ⊆ F.

In this paper, we consider lbfc-systems with respect to a fixed value of b ∈ N,
i.e., b is a constant which does not vary along different inputs. Implicitly, we
think of b = 1 (safe systems), but any other fixed value for b is possible too.

Our NP-algorithm for lbfc-systems is based on the following key property:
whenever a marking M ′ can be reached from M in an lbfc-system, then there
exists some connecting firing sequence of polynomial length. This was first shown
in [14], but we rely on the textbook by the same authors [13].

Theorem 1 (Shortest Sequence Theorem [13, Theorem 9.17]). Let (N,M0)
be an lbfc-system with n transitions and let M be a reachable marking. Then,
there is a firing sequence σ such that (N,M0)[σ⟩(N,M) and

|σ| ≤ b · n · (n+ 1) · (n+ 2)

6
.

Unfortunately, the Shortest Sequence Theorem cannot be directly applied to
alignments as it only guarantees the existence of a “short” firing sequence. In
particular, when we start from an arbitrary firing sequence and then, using the
above theorem, pass over to a short one, this new sequence can be completely
different from the original sequence. This is problematic in context of alignments,
since the “short” sequence could contain different transitions, potentially with
much higher costs of moves. In a nutshell, a “shorter” sequence is not necessarily
a “cheaper” sequence. Luckily, the result can be stated in a more general form.

Theorem 2 (Shortest Sequence Theorem – Generalized Form). Let
(N,M0) with N = (P, T, F, ℓ) and bound b be an lbfc-system. Moreover, let
σ ∈ T ∗ and M1,M2 ∈ [N,M0⟩ such that (N,M1)[σ⟩(N,M2). Then, there exists
a firing sequence σ′ ∈ T ∗ with σ′ ≤ σ, (N,M1)[σ

′⟩(N,M2) and

|σ′| ≤ b · |T | · (|T |+ 1) · (|T |+ 2)

6
.



Complexity of Alignments on Sound Free-Choice Workflow Nets 9

To prove Theorem 2, we go through the machinery of [13] while making
necessary changes to results and proofs. For those parts that do not require any
adaptation, we refer to [13] for details. The proof consists of two steps. First, we
consider the case of T-systems, a subclass of free-choice systems where each place
has at most one input and one output transition. In such systems, whenever a
transition is enabled, it cannot be disabled by firing any other transition.

Definition 15 (T-Net, T-System). A Petri net N = (P, T, F, ℓ) is a T-net if
each place has at most one input and one output transition, i.e., ∀p ∈ P : |•p| ≤
1, |p•| ≤ 1. A system (N,M0) is a T-system if N is a T-net.

The syntactic restrictions of T-nets allow us to rearrange firing sequences in such
a way that the same sets of transitions are repeatedly fired until, eventually, more
and more transitions die out and the set of occurring transitions becomes smaller
and smaller (assuming b-boundedness).

Definition 16 (Biased Firing Sequence [cf. 13, Definition 3.22]). A firing
sequence σ ∈ T ∗ is biased if for all t1, t2 ∈ ⟨σ⟩, t1 ̸= t2, it holds that •t1∩•t2 = ∅.

Note that firing sequences in T-systems are always biased. In biased se-
quences, we can move each occurring transition to an initial segment:

Lemma 1 ([13, Lemma 3.24 p. 56]). Let (N,M0) be a system with N =
(P, T, F, ℓ) and let σ ∈ T ∗ be a biased firing sequence. Then, there exists a per-
mutation ρ = σ1σ2 of σ with ρ = σ such that ∃M ∈ NP : (N,M0)[σ⟩(N,M) ∧
(N,M0)[σ1σ2⟩(N,M) and no transition occurs more than once in σ1 and every
transition that occurs in σ2 occurs also in σ1, i.e., ⟨σ2⟩ ⊆ ⟨σ1⟩.

For the following lemma we need to generalize the result from [13]:

Lemma 2 (Generalized Form of [13, Lemma 3.25]). Let (N,M0) with N =
(P, T, F, ℓ) and bound b be an lbfc-system and let (N,M0)[σ⟩(N,M) for a firing
sequence σ ∈ T ∗ and a marking M such that σ is biased and non-empty. Then,
there exists ρ = σ1σ2 with ρ ≤ σ such that

– (N,M0)[σ⟩(N,M) and (N,M0)[σ1σ2⟩(N,M),
– each transition occurs at most b times in σ1, and
– ⟨σ1⟩ ⊃ ⟨σ2⟩ (set of occurring transitions decreases).

Proof. First, we repeatedly apply Lemma 1 in order to obtain a permutation of
σ which is of the form ρ1ρ2 · · · ρn with ρi ̸= ⟨⟩ with the following properties:

– for all i = 1, . . . , n, no transition occurs more than once in ρi, and
– for all i < n, ⟨ρi⟩ ⊇ ⟨ρi+1⟩.

If n ≤ b, we are done: simply choose σ2 = ⟨⟩ and σ1 = ρ1 · · · ρn. So, let us assume
n ≥ b + 1. If ⟨ρ1⟩ ⊃ ⟨ρb+1⟩, we can stop our argument at this point as well,
since then σ1 = ρ1 · · · ρb and σ2 = ρb+1 · · · ρn would have the desired properties.
So, let us also assume that ⟨ρ1⟩ = ⟨ρb+1⟩. Choose the maximal m such that
⟨ρ1⟩ = ⟨ρm⟩ (note that b + 1 ≤ m ≤ n). Let X := ⟨ρ1⟩ = ⟨ρm⟩ ⊆ T . Since



10 C.T. Schwanen et al.

each transition in X occurs precisely once in each of the ρi, we know that for
each place the same number of tokens is added or removed after firing each of
the subsequences ρi. Since each place can hold at most b tokens (since the net
is b-bounded) this means that firing all transitions in X must leave the number
of tokens in each place invariant. But this, in turn, implies that each of the ρi,
1 ≤ i ≤ m does not modify the initial marking M0. Hence, we can simply choose
σ1 = ρ1 and σ2 = ρm+1 · · · ρn which completes our proof. ⊓⊔

This already implies the Shortest Sequence Theorem for T-systems. For later
use, let us state the concrete implications in a generalized form of what the
authors in [13] call the Biased Sequence Lemma:

Lemma 3 (Biased Sequence Lemma, Generalized Form of [13, Lemma 3.26]).
Let (N,M0) with N = (P, T, F, ℓ) and bound b be an lbfc-system and let

(N,M0)[σ⟩(N,M) for a firing sequence σ ∈ T ∗ and a marking M such that
σ is biased and non-empty. Let k denote the number of (distinct) transitions
in σ, i.e., k := |⟨σ⟩|. Then, there exists a firing sequence ρ such that ρ ≤ σ,
(N,M0)[ρ⟩(N,M), and

|ρ| ≤ b · k · (k + 1)

2
.

Proof. By repeatedly applying Lemma 2, we find ρ = ρ1ρ2 · · · ρk, ρ ≤ σ where

– (N,M0)[ρ1ρ2 · · · ρk⟩(N,M),
– each transition occurs at most b times in ρi, and
– ρi contains at most (k + 1− i) many different transitions.

Hence, |ρ| ≤ b ·
∑k

i=1 i = b · k · (k + 1)/2 as claimed. ⊓⊔

Next, we consider the case of general free-choice systems. To proceed, we need
to introduce a couple of notions and definitions. In what follows, we implicitly
refer to some lbfc-system (N,M0) with N = (P, T, F, ℓ).

Definition 17 (Cluster [cf. 13, Definition 4.4]). For two transitions t, t′ ∈ T
we let t ∼ t′ if •t = •t′. This gives rise to an equivalence relation ∼ on T whose
equivalence classes [t] are called clusters.

Definition 18 (Conflict Order [cf. 13, Definition 9.8]). A conflict order ⪯ ⊆
T×T is any partial order on T such that two transitions t, t′ ∈ T are comparable
if and only if [t] = [t′], i.e., •t∩•t′ ̸= ∅. The corresponding strict partial order is
denoted by ≺, i.e., t ≺ t′ if and only if t ⪯ t′ and t ̸= t′.

To put it differently, a conflict order is composed of separate linear orderings
on the clusters of the lbfc-system. The key idea (and main challenge) in the
proof of the Shortest Sequence Theorem is to show that each firing sequence can
be rearranged in such a way that the permuted firing sequence is ordered with
respect to some conflict order with which the firing sequence agrees:



Complexity of Alignments on Sound Free-Choice Workflow Nets 11

Definition 19 (Ordered Firing Sequence [cf. 13, Definition 9.8]). A firing
sequence σ ∈ T ∗ is ordered with respect to a conflict order ⪯ if for all t ≺ t′ there
is no occurrence of t in σ after an occurrence of t′. Furthermore, σ agrees with
⪯ if for each cluster c either no transition of c occurs in σ or the last transition
of c that occurs in σ is the maximal transition in c (according to ⪯).

The central result is the following Theorem from [13] which, conveniently, we
can use without modification:

Theorem 3 ([13, Proposition 9.16]). Let (N,M0) with N = (P, T, F, ℓ) be an
lbfc-system. Moreover, let (N,M0)[σ⟩(N,M) for a firing sequence σ ∈ T ∗ and
let ⪯ be any conflict order which agrees with σ. Then, there exists a ⪯-ordered
permutation ρ of σ such that (N,M0)[ρ⟩(N,M).

With Theorem 3 and the Biased Sequence Lemma (Lemma 3) we can finally
prove our generalized version of the Shortest Sequence Theorem.

Proof (Theorem 2). First, note that for M ∈ [N,M0⟩ the system (N,M) is an
lbfc-system as well. Hence, it suffices to shorten a firing sequence σ of the
form (N,M0)[σ⟩(N,M). Moreover, due to Theorem 3, we can assume that σ is
⪯-ordered for some conflict order ⪯ (if not, we can permute σ accordingly).

We iteratively split σ up into parts σi, i = 1, . . . , k, i.e., σ = σ1σ2 · · ·σk,
with respect to the following property: σi is a maximal prefix of σi · · ·σk such
that σi is biased. We claim that the number of distinct transitions in σi+1 is
smaller than the number of distinct transitions in σi. This is because the first
transition t′ of σi+1 must be in the same cluster t′ ∈ [t] of some transition
t ̸= t′ that occurs in σi (because of the maximality of σi). Since σ is ordered,
t ≺ t′ and t cannot occur in σi+1 · · ·σk. Hence, σi contains at most (|T | − i+ 1)
distinct transitions. In particular, k ≤ |T |. We have (N,Mi−1)[σi⟩(N,Mi) where
Mk = M . By Lemma 3 we find firing sequences σ′

i, σ′
i ≤ σi of length at most

b ·(|T |−i+1) ·(|T |−i+2)/2 with (N,Mi−1)[σ
′
i⟩(N,Mi). The shortened sequence

σ′ = σ′
1σ

′
2 · · ·σ′

k, σ
′ ≤ σ has length at most

b

2
·
|T |∑
i=1

(|T | − i+ 1) · (|T | − i+ 2) =
b

2
· |T | · (|T |+ 1) · (|T |+ 2)

3
,

and satisfies (N,M0)[σ
′⟩(N,M), which completes our proof. ⊓⊔

With this result, we can bound the length of sequences of consecutive model
moves in alignments. This, in turn, allows us to show that lbfc-systems always
have optimal alignments of polynomial length:

Theorem 4 (Alignments in lbfc-Systems). Let S = (N,Minit ,Mfinal) be
an lbfc-system with N = (P, T, F, ℓ), bound b, and labeling function ℓ : T →
Σ ∪ {τ} and let σ ∈ Σ∗ be a trace over the alphabet Σ. Then, there exists an
optimal alignment γ ∈ Γσ,S between σ and S such that

|γ| ≤ (|σ|+ 1) ·
(
b · |T | · (|T |+ 1) · (|T |+ 2)

6
+ 1

)
.



12 C.T. Schwanen et al.

Proof. Let γ = ⟨γi⟩|γ|i=1 ∈ Γσ,S be an optimal alignment of minimal length. We
show that |γ| satisfies the above inequality.

Let us denote the length of the trace σ by q = |σ|. Since π1(γ)|Σ = σ, we can
find a subsequence ⟨γi⟩i∈I of γ with I ⊆ {1, . . . , |γ|}, I = {i1, i2, . . . , iq}, i1 <
i2 < · · · < iq and such that π1(⟨γi⟩i∈I) = σ. We use the positions i1, i2, . . . , iq ∈ I
in order to split γ up into q + 1 parts:

δ0 = ⟨γ1, . . . , γi1⟩, δ1 = ⟨γi1+1, . . . , γi2⟩, . . . , δq = ⟨γiq+1, . . . , γ|γ|⟩.

For an illustration, see Figure 3. Next, we show that for each j ∈ {0, . . . , q}
we have |δj | ≤ b · |T | · (|T |+ 1) · (|T |+ 2)/6 + 1. If we can verify this, the claim
follows. Pick some j ∈ {0, . . . , q} and let

Mj ∈ NP : (N,Minit)[π2(⟨γ1, . . . , γij ⟩)|T ⟩(N,Mj),

M ′
j ∈ NP : (N,Minit)[π2(⟨γ1, . . . , γij+1−1⟩)|T ⟩(N,M ′

j),

where for the cases j = 0 we let M0 := Minit and for j = q we let M ′
q := Mfinal .

In words, Mj is the marking that we obtain from Minit by firing the transitions
in γ of the first j parts, i.e., π2(⟨γ1, . . . , γij ⟩)|T , and M ′

j is the marking that we
get by firing the transitions in the first j + 1 parts, i.e., π2(⟨γ1, . . . , γij+1−1⟩)|T ,
except for the very last transition from the move γij . The motivation for looking
at these two markings is as follows:

– by definition, we can reach the marking M ′
j from marking Mj by firing the

intermediate sequence π2(⟨γij+1, . . . , γij+1−1⟩),
– each of the moves in this sequence ⟨γij+1, . . . , γij+1−1⟩ is of the form (≫, t),

i.e., we only move in the system, but not in the trace,
– the length of this sequence is |δj | − 1.

Hence, it suffices to show that the sequence ⟨γij+1, . . . , γij+1−1⟩ is of length at
most b · |T | · (|T |+1) · (|T |+2)/6. To see this, we make use of Theorem 2. In fact,
by this result we know that from π2(⟨γij+1, . . . , γij+1−1⟩) we could construct, by
deleting and rearranging transitions, a firing sequence which leads from Mj to
M ′

j in the underlying system of length at most b·|T |·(|T |+1)·(|T |+2)/6. Since all
moves in ⟨γij+1, . . . , γij+1−1⟩ are of the form (≫, t), we could lift the necessary
deletion and rearrangement steps to the level of γ without doing any harm to the
alignment properties. Also note that since we only delete and rearrange moves,
the costs of the alignment do not increase. Since γ was chosen to be an optimal
alignment of minimal length, the claim follows. ⊓⊔

Theorem 4 yields an NP-strategy for the alignment problem on lbfc-systems:
on input S, σ, and k, where S is an accepting lbfc-system, σ is a trace as
above, and k ∈ Q≥0 denotes a threshold, the problem is to decide whether some
alignment γ ∈ Γσ,S exists with costs

∑
c(γ) ≤ k. We make use of Theorem 4 and

non-deterministically construct an alignment γ of length at most (|σ| + 1) · (b ·
|T | · (|T |+1) · (|T |+2)/6+1) and verify that: (1) γ is a valid alignment between
σ and S, and (2) its costs

∑
c(γ) do not exceed k. By Theorem 4, an optimal



Complexity of Alignments on Sound Free-Choice Workflow Nets 13

Figure 3: Decomposing the alignment γ into parts δj at non-model move posi-
tions ij . The proof idea is to shorten model move sequences (purple arrows) to
connecting sequences of length at most b · |T | · (|T |+1) · (|T |+2)/6. t⋆ is a place-
holder for any transition in T , ⋆ for a transition in T or the no-move symbol ≫.

alignment between σ and S is among the potential candidates. Note that (since
b is a constant) the length of γ is bounded polynomially in σ and S. Moreover,
it is easy to verify that γ is a valid alignment (just simulate the system S and σ
accordingly) and to check that its costs do not exceed k. Hence, we obtain:

Corollary 1. On the class of lbfc-systems, Align is in NP.

6 Align on Sound Free-Choice Workflow Nets

In this section, we focus on sound free-choice workflow nets. Workflow nets are
characterized by a distinct source place and a distinct sink place and are thus
tightly related to accepting systems. In particular, sound free-choice workflow
nets are not only considered a subclass of lbfc-systems for which we have shown
above that Align ∈ NP, but also of cyclic lbfc-systems (i.e., their initial mark-
ing is always reachable) for which reachability is in P [12]. This raises hope for an
efficient algorithm for Align—contrary to reachability on lbfc-systems, which
is NP-complete [16]—; yet, we show that Align remains NP-hard.

Definition 20 (Workflow Net). A Petri net N = (P, T, F, ℓ) with labeling
function ℓ : T → Σ ∪ {τ} is a workflow net if

– there is a single source place pinit ∈ P , i.e., {pinit} = {p ∈ P | •p = ∅},
– a single sink place pfinal ∈ P , i.e., {pfinal} = {p ∈ P | p• = ∅}, and
– every vertex v ∈ P ∪ T of the Petri net is on a path from pinit to pfinal .

Implicitly, in workflow nets, the initial marking is Minit = [pinit ], and the fi-
nal marking is Mfinal = [pfinal ]. The short-circuited net N̄ := (P, T ∪ {t̄}, F ∪
{(pfinal , t̄), (t̄, pinit)}, ℓ ∪ {(t̄, ℓ(t̄) := τ)}), t̄ /∈ T , is an important tool to transfer
the behavioral characteristics of lbfc-systems to workflow nets.

Definition 21 (Soundness [cf. 1, Theorem 11]). A workflow net is sound if
and only if the short-circuited net is live and bounded.

Note that a sound free-choice workflow net is always safe [2, Lemma 1]. Using
Definitions 20 and 21 and Corollary 1, we immediately obtain NP-membership:



14 C.T. Schwanen et al.

Corollary 2. On the class of sound free-choice workflow nets, Align is in NP.

We use a small detour via a closely related problem to show that NP is indeed
also a lower bound. The membership problem determines whether a trace is part
of the language of a given Petri net, i.e., whether it occurs as the labeling of a
complete firing sequence of a given accepting system.

Problem 2 (Membership (Member)).
Input: An alphabet Σ, an accepting system S = (N,Minit ,Mfinal) with N =

(P, T, F, ℓ) and labeling function ℓ : T → Σ ∪ {τ}, and a trace σ ∈ Σ∗.
Question: Is σ ∈ L(S)?
It is easy to see that Member is a special case of Align where we look for

a perfect alignment with costs 0.

Lemma 4. Member is polynomial-time reducible to Align.

Proof. Let Σ, S = (N,Minit ,Mfinal), N = (P, T, F, ℓ), ℓ : T → Σ ∪ {τ}, and
σ ∈ Σ∗ be an input of the Member problem. For the reduction to Align we
make use of the standard cost function and set k = 0. In effect, we are looking for
a perfect alignment between σ and S (i.e., with costs 0), which can only consist
of synchronous moves and silent model moves. Thus, it requires that the trace σ
can be obtained as the labeling of a firing sequence of the system S from Minit

to Mfinal . This is precisely the decision problem Member. There is, however, a
small issue: the system S is not necessarily easy-sound, but this is required for
inputs of Align. To solve this, we add a new transition t9 with •t9 = Minit ,
t9• = Mfinal and a new label not present in σ. This ensures easy-soundness, but,
if this transition is taken in some alignment, we neither have a synchronous nor
silent move, and thus the costs are at least 1. ⊓⊔

To show NP-hardness of Align, we use the fact that a live, safe T-system can
emulate a shuffle language for which Member is NP-complete [22, 32]. Since
T-systems are free-choice, we can combine Theorem 5 with Corollaries 1 and 2,
to conclude the same for lbfc-systems and sound free-choice workflow nets.

Theorem 5. On the class of live and safe T-systems, Align is NP-hard. Even
when this class is further restricted to acyclic systems, Align remains NP-hard.

Proof. Let x� y := {v1w1 · · · vkwk | x = v1 · · · vk, y = w1 · · ·wk, vi, wi ∈ Σ∗, 1 ≤
i ≤ k} be the shuffle of two words x, y ∈ Σ∗ and let L1 � L2 :=

⋃
{w1 � w2 |

w1 ∈ L1, w2 ∈ L2} be the shuffle of two languages L1,L2 ⊆ Σ∗. Furthermore,
let w ∈ Σ∗ be a word and let L(w1 � w2 � · · ·� wn) be the shuffle language
over words w1, w2, . . . , wn ∈ Σ∗. There exists a process tree T only using the
sequence and parallel operator with L(T ) = L(w1�w2� · · ·�wn) [cf. 27]. Using
the construction in [34], T can be transformed to a safe and sound workflow net
that is also a T-system and acyclic. Because Member for a shuffle language (i.e.,
deciding whether w ∈ L(w1 � w2 � · · ·� wn)) is already NP-complete [22, 32],
Align is NP-hard on the class of live and safe (acyclic) T-systems by Lemma 4.

Corollary 3. On the class of (acyclic) lbfc-systems and on the class of sound
(acyclic) free-choice workflow nets, Align is NP-complete.



Complexity of Alignments on Sound Free-Choice Workflow Nets 15

7 Align on General Safe and Sound Workflow Nets

We finally show that the free-choice assumption is needed to break the PSPACE
barrier: In Theorem 8 and Corollary 5, we prove that Align on safe and sound
workflow nets is PSPACE-complete.

As a preparatory step, we show that the alignment problem is PSPACE-
complete on the class of safe systems (Theorem 7). The usual approach for
computing optimal alignments is via a reduction to the reachability problem in
Petri nets. Therefore, we express the input trace itself in form of a Petri net:

Definition 22 (Trace System). Let σ ∈ Σ∗ be a trace over Σ. Its trace system
T (σ) := (N,Minit ,Mfinal) is an accepting system with N = (P, T, F, ℓ) where

– P := {pi | 0 ≤ i ≤ |σ|} is the set of places,
– T := {ti | 1 ≤ i ≤ |σ|} is the set of transitions,
– F :=

⋃
1≤i≤|σ|{(pi−1, ti), (ti, pi)} is the flow relation,

– ℓ : T → Σ is the labeling function such that ℓ
(
⟨ti⟩|σ|i=1

)
= σ,

– Minit = [p0] is the initial marking, and
– Mfinal = [p|σ|] is the final marking.

Now, both, the process model and the trace are represented by a Petri net
and can be combined using the synchronous product, which was introduced in
[3] and is a special case of the product of Petri nets introduced in [33].

Definition 23 (Synchronous Product). Let Σ be an alphabet and let S1 =
(N1,M1,init ,M1,final) and S2 = (N2,M2,init ,M2,final) be two accepting systems
with N1 = (P1, T1, F1, ℓ1), N2 = (P2, T2, F2, ℓ2), ℓ1 : T1 → Σ∪{τ}, and ℓ2 : T2 →
Σ ∪ {τ} where P1, T1, P2, and T2 are pairwise disjoint sets. Furthermore, let
≫ /∈ Σ, T1, T2 be a distinguished no-move symbol. The synchronous product of S1

and S2, denoted by S1⊗S2, is the accepting system S1⊗S2 := (N,Minit ,Mfinal)
with the Petri net N := (P, T, F, ℓ) and labeling function ℓ : T → Σ ∪ {τ} where

– P := P1 ∪ P2,
– T := {(t1, t2) ∈ T1 × T2 | ℓ1(t1) = ℓ2(t2)} ∪ (T1 × {≫}) ∪ ({≫} × T2),
– F := {(p, (t1, t2)) ∈ P × T | (p, t1) ∈ F1 ∨ (p, t2) ∈ F2}

∪ {((t1, t2), p) ∈ T × P | (t1, p) ∈ F1 ∨ (t2, p) ∈ F2},

– (t1, t2) 7→ ℓ(t1, t2) :=

{
ℓ1(t1) t1 ∈ T1,

ℓ2(t2) t1 /∈ T1,

– Minit := M1,init ⊕M2,init , and Mfinal := M1,final ⊕M2,final .

As shown in [3], complete firing sequences in the synchronous product correspond
to alignments between the trace and the model.

Proposition 1 ([3, Theorem 4.3.5]). Given a trace σ and an accepting sys-
tem S as process model, complete firing sequences of their synchronous product
correspond to alignments between σ and S, i.e., Γσ,S = L(T (σ)⊗ S).

Furthermore, the product structure directly transfers to the reachability set:



16 C.T. Schwanen et al.

Proposition 2 ([3, Theorem 4.3.4, 33, Theorem 4.1]). Given two systems S1

and S2, any combination M1 ⊕ M2 of a reachable marking M1 ∈ [S1⟩ and a
reachable marking M2 ∈ [S2⟩ is a reachable marking in the synchronous product
S1 ⊗ S2, i.e., ∀M1 ∈ [S1⟩,M2 ∈ [S2⟩ : M1 ⊕M2 ∈ [S1 ⊗ S2⟩ and vice versa.

Corollary 4. Given a b1-bounded system S1 and a b2-bounded system S2, their
synchronous product S1 ⊗ S2 is max{b1, b2}-bounded.

We now draw the connection to the reachability problem and its cost-variant:

Problem 3 (Reachability (Reach)).
Input: A system (N,M0) with N = (P, T, F, ℓ) and a marking M ∈ NP .
Question: Is M ∈ [N,M0⟩?

Problem 4 (Minimum-Cost Reachability (MinCostReach)).
Input: A system (N,M0) with a Petri net N = (P, T, F, ℓ), a marking M ∈

NP , a cost function c : T → Q≥0 and a number k ∈ Q≥0.
Question: Is there a σ ∈ T ∗ such that (N,M0)[σ⟩(N,M) and

∑
c(σ) ≤ k?

Since we can also assign costs of 0 to any transition, MinCostReach is a
generalization of Reach and we have:

Lemma 5. Reach is polynomial-time reducible to MinCostReach.

We can now show that MinCostReach on safe systems is in PSPACE:

Theorem 6. On the class of safe systems, MinCostReach can be decided in
polynomial space (in short: MinCostReach ∈ PSPACE).

Proof. To find a deterministic PSPACE algorithm for MinCostReach, we use
Savitch’s Theorem [25]: for every non-deterministic PSPACE algorithm, there
also exists an equivalent deterministic algorithm.

Let (N,M0), N = (P, T, F, ℓ), c, M , and t be an input of the MinCostReach
problem. That is, (N,M0) is a safe system with a Petri net N = (P, T, F, ℓ),
c : T → Q≥0 is a cost function, M ∈ NP is a marking, and t ∈ Q≥0 is a cost
limit. The algorithm stores a marking M , which is initially set to M = M0, and
a cost value c̄, initially set to c̄ = 0. Note that since (N,M0) is safe, a marking
of N can be stored in polynomial space. As long as M ̸= M , the algorithm non-
deterministically chooses a transition t ∈ T enabled in marking M and computes
the marking M

′
after firing t, i.e., (N,M)[t⟩(N,M

′
). Then, the stored marking

is set to M := M
′
and the stored cost value is set to c̄ := c̄+ c(t).

If M is not reachable, the algorithm does not necessarily terminate. Thus,
we add a counter which counts the number of fired transitions. Because (N,M0)
is safe, it has at most 2|P | reachable markings. Therefore, we can stop if more
than 2|P |− 1 transitions were fired. If the algorithm reaches the marking M and
c̄ ≤ t, it stops and M can be reached within the cost limit. If the counter exceeds
2|P | − 1 or c̄ exceeds t, M cannot be reached within the cost limit. ⊓⊔

Since Reach on safe systems is PSPACE-complete [10, 11], we can conclude:



Complexity of Alignments on Sound Free-Choice Workflow Nets 17

Lemma 6. On the class of safe systems, MinCostReach is PSPACE-complete.

Proof. On the class of safe systems, Reach is PSPACE-complete [10, 11]. By
Lemma 5, MinCostReach is PSPACE-hard. In combination with Theorem 6,
MinCostReach is PSPACE-complete on the class of safe systems. ⊓⊔

The next result allows us to transfer the PSPACE-bound to Align.

Lemma 7. Align is polynomial-time reducible to MinCostReach.

Proof. Let Σ, S = (N,Minit ,Mfinal), N = (P, T, F, ℓ), ℓ : T → Σ ∪ {τ}, σ ∈ Σ∗,
c : LMΣ,S → Q≥0, and k be an input of the Align problem. That is, Σ is an
alphabet representing the set of activities, S = (N,Minit ,Mfinal) is an easy-
sound system, i.e., ϕ(S) ̸= ∅, with the Petri net N = (P, T, F, ℓ) and labeling
function ℓ : T → Σ∪{τ}, σ ∈ Σ∗ is a trace over the alphabet Σ, and c : LMΣ,S →
Q≥0 is a function which assigns costs to each legal move between Σ and S.

According to [3], finding an optimal alignment between σ and S is identical
to finding a cost-minimal complete firing sequence in the synchronous product
net T (σ) ⊗ S. Let T (σ) ⊗ S := (N ′,M ′

init ,M
′
final) where N ′ := (P ′, T ′, F ′, ℓ′)

and in particular T ′ ⊆ LMΣ,S . Therefore, a solution to MinCostReach with a
system (N ′,M ′

init) where N ′ = (P ′, T ′, F ′, ℓ′), a marking M ′
final , a cost function

c, and a number k as input is also a solution to Align. ⊓⊔

Lemma 8. MinCostReach is polynomial-time reducible to Align.

Proof. Let (N,M0), M , c, and k be an input for the MinCostReach problem,
i.e., (N,M0) is a system with Petri net N = (P, T, F, ℓ), M ∈ NP the target
marking, c : T → Q≥0 a cost function, and k ∈ Q≥0 a threshold. It is to decide
if M can be reached from M0 with costs at most k.

To map this to an input of Align, we make use of the empty trace σ = ⟨⟩.
Aligning the empty trace corresponds to finding a firing sequence from the initial
marking M0 to the final marking M with minimal costs. Similarly as in the proof
of Lemma 4, we have one technical problem: the system (N,M0,M) might not
be easy-sound. Again, we can solve this by adding a transition t9 which allows
the system to move from M0 to M in one step. By making this transition very
expensive (at least k + 1), we ensure easy-soundness, and, in case M is not
reachable from M0, the optimal alignment has costs at least k + 1. ⊓⊔

Altogether, this yields our first main result of this section:

Theorem 7. On the class of safe systems, Align is PSPACE-complete.

Proof. A trace system is safe by definition, the synchronous product considered
in Lemma 7 is also safe according to Corollary 4. Hence, with Lemma 6 we have
Align ∈ PSPACE on the class of safe systems. Due to Lemmas 6 and 8, Align is
also PSPACE-hard on the class of safe systems and thus PSPACE-complete. ⊓⊔

We finally turn our attention to safe and sound workflow nets, i.e., we add
the liveness assumption. The question is whether this property suffices to reduce
the complexity of the alignment problem. This turns out not to be the case:



18 C.T. Schwanen et al.

Theorem 8. There is a polynomial time algorithm which transforms a deter-
ministic Turing machine M with polynomial space bound p(n) and an input w
into a safe and sound workflow net S = (N,Minit ,Mfinal) and a trace σ such
that, with respect to the standard cost function, S and σ can be aligned with 0
costs if and only if M accepts w.

Proof. We extend the construction in [10, Theorem 4]. First, we make some
assumptions on M which can be guaranteed by preprocessing. When the (de-
terministic, single tape) Turing machine M is started with input w, during the
computation, the head of M only moves between positions 0 and p(n), where
n = |w|, starting at position 0. Moreover, each computation is finite, i.e., the
machine M never repeats a configuration. In particular, M halts on every input
and either accepts or rejects. Finally, there is precisely one accepting and one
rejecting configuration of the machine M. To guarantee this, one can implement
a subroutine such that, whenever the machine M enters a final state (accepting
or rejecting), then the tape is cleared, the head moves back to position 0, and
the machine enters a unique accepting or rejecting state, respectively.

Let M = (K,Σ,Γ, δ, q0, q+, q−,⊥) be a deterministic Turing machine where
K is the set of states, Σ the input alphabet, Γ the tape alphabet, δ : K\{q+, q−}×
Γ → K × Γ × {−1, 1, 0} the transition function (−1 (1) means the head moves
one position to the left (right), and 0 means no move), q0 ∈ K the initial state,
q+ ∈ K the unique accepting state, q− ∈ K the unique rejecting state, and
⊥ ∈ Γ \ Σ the blank symbol. To encode the computation of M on input w, we
define a workflow net N = (P, T, F, ℓ) with a set of places P consisting of:

– the initial place pinit and the final place pfinal ,
– a place pKq for each state q ∈ K (a token in pKq indicates that in the current

configuration M is in state q),
– a place pHi for each possible head position i ∈ {0, . . . , p(n)} (a token in pHi

indicates that in the current configuration the head is at position i),
– a place pCi,a for each possible tape cell content, i.e., for each combination of

a valid position i ∈ {0, . . . , p(n)} and a tape symbol a ∈ Γ (a token in pCi,a
indicates that in the current configuration tape cell i holds symbol a).

With this preparation, we identify configurations of M with markings of N . To
simulate the computation, we introduce the following set of transitions T :

– One transition t� that yields the initial configuration, i.e., •t� = {pinit} and
t�• = {pKq0} ∪ {pH0 } ∪ {pCi,wi

| i < |w|} ∪ {pCi,⊥ | |w| ≤ i ≤ p(n)}.
– One transition t✓ that finalizes the computation when the (unique) accepting

configuration is reached, i.e., t✓• = {pfinal} and •t✓ = {pKq+}∪{pH0 }∪{pCi,⊥ |
i ≤ p(n)}. This transition is labeled by ✓ and there is no other transition
labeled by ✓. In the same way, we add one transition tp that finalizes the
computation when the (unique) rejecting configuration is reached.

– For each possible computational step, we introduce a distinct transition: for
each state q ∈ K, symbol a ∈ Γ with δ(q, a) = (q′, b, d), and for each head
position i ∈ {0, . . . , p(n)}, we introduce a transition t[q, a, i] that models



Complexity of Alignments on Sound Free-Choice Workflow Nets 19

the configuration change which occurs when M is in state q, the head is at
position i, and reads the symbol a. More precisely, •t[q, a, i] = {pKq , pHi , pCi,a}
and t[q, a, i]• = {pKq′ , pHi+d, p

C
i,b}.

By construction, we can trigger the simulation from the initial marking
Minit = [pinit ] by firing t�. This generates the initial configuration of the com-
putation of M on w. Since the machine M is deterministic, from that point
onward there is at most one transition of the form t[q, a, i] that can be fired in
the current marking/configuration. This transition, in turn, updates the mark-
ing/configuration according to the transition function of M. Since we have pre-
pared M in such a way that the computation is acyclic, we will finally reach
the unique accepting or rejecting configuration from which we can fire t✓ or tp,
respectively, to reach the final marking Mfinal = [pfinal ]. Giving the one-to-one
correspondence between markings of N and configurations of M, the resulting
net is safe (every reachable marking corresponds to a configuration in the sense
described above and such markings only hold at most one token per place).

The problem is that N is not sound. In general, it might be that a transition
of the form t[q, a, i] can never fire simply because the computation of M on w
does never run into an enabling configuration. Also, we can either fire t✓ or tp
from the initial marking, but not both. To overcome this, we first add a new
place paux indicating when the net is in auxiliary mode. Then, we add two new
transitions t0✓ and t0p which can fire at the initial marking and activate t✓ and
tp: we set •t0✓ = {pinit} and t0✓• = •t✓ and analogously for t0p. In other words,
t0✓ and t0p produce the two unique markings where precisely t✓ or tp is enabled,
respectively. So, we can reach the final marking by firing either of them (note that
transitions of the form t[q, a, i] are not enabled in these terminal configurations
of M). Second, for each transition t[q, a, i] we add two new transitions t0[q, a, i]
and t1[q, a, i] which activate and deactivate t[q, a, i] from the initial marking, i.e.,

•t0[q, a, i] = {pinit}, and t0[q, a, i]• = {paux} ∪ •t[q, a, i],
•t1[q, a, i] = {paux} ∪ t[q, a, i]•, and t1[q, a, i]• = {pfinal}.

In this way, we can move via the sequence ⟨t0[q, a, i], t[q, a, i], t1[q, a, i]⟩ from the
initial to the final marking and fire t[q, a, i] along the way. However, there is one
subtlety we have to discuss. In contrast to the case of t✓ and tp, the manual
activation and firing of t[q, a, i] might enable transitions different from t1[q, a, i].
In fact, if the head does not move in state q while reading a, three tokens would
be produced by t[q, a, i] which would allow the net to fire another transition of
the form t[q′, b, i]. However, all such transitions are conservative in the sense that
they do not alter the total count of tokens (they all consume and produce three
tokens). Thus, the total count of tokens remains three which means that we will
never be able to fire one of the final transitions t✓ or tp. Since M does not
allow cyclic computations, eventually we get stuck in the simulation component
after firing one transition of the form t[q′, b, i] which moves the head to the left
or right (note that for the new cell, we are missing a token in a place pCa,i+d

for d ∈ {−1, 1}). In this setting we can simply fire t1[q′, b, i] which removes the



20 C.T. Schwanen et al.

tokens produced by t[q′, b, i] and enters the final marking. Finally, all introduced
auxiliary transitions get the extra label â. Note that we cannot mix a proper
simulation of the computation of M on w triggered by firing t� with a transition
of the form t1[q, a, i] since this transition requires a token in paux . Altogether, by
this second extension each transition in the workflow net can be fired from the
initial marking and we maintain the property to always reach the final marking.

Finally, let σ := ⟨✓⟩. Then, we claim that σ and the safe and sound workflow
net S can be aligned with costs 0 (wrt. the standard cost function) if and only if
M accepts input w. Clearly, if M accepts w, the simulation triggered by firing
t� simulates the computation via silent transitions of the form t[q, a, i] until the
single transition t✓ with label ✓ can eventually be fired synchronously with the
symbol ✓ in σ. This does not incur any costs since we only have one synchronous
move and several silent moves in the net. If, on the other hand, the computation
of M on w is rejecting, there is no way to align σ with costs 0. In fact, if any of
the auxiliary transitions is used, this will immediately lead to a model move since
σ does not contain the symbol â. If, on the other hand the proper simulation of
M on w is started via t�, then this will end up in a completely silent run ending
with tp and we would require a log move for the symbol ✓ in the trace. ⊓⊔

Together with PSPACE-membership for safe systems (Theorem 7), we get:

Corollary 5. On the class of safe and sound workflow nets, Align is PSPACE-
complete.

8 Conclusion

We proved that the high algorithmic costs for computing alignments are unavoid-
able: an efficient algorithm for alignments on sound workflow nets (the standard
model in process mining) does not exist (assuming P ̸= PSPACE). Furthermore,
we derived better algorithmic bounds for important model classes, such as the
class of sound free-choice workflow nets which, in turn, includes all process trees.

Our results also show that for a complexity-theoretic understanding of align-
ments, we cannot simply refer to the reachability problem. For instance, on live,
bounded, free-choice systems, the reachability and alignment problem are both
NP-complete (see [16] and Section 5). However, if we further assume cyclicity
(i.e., the initial marking is reachable from any other marking), the complexity
of reachability drops to P while the alignment problem remains NP-complete
(see [12] and Section 5). In particular, this complexity gap also holds for sound
free-choice workflow nets as well as simpler model classes like Partially Ordered
Workflow Language (POWL) models [20] or process trees [27].

For future research, we want to investigate in how far the bounds of the Short-
est Sequence Theorem can be further improved on sound free-choice workflow
nets. Potentially, this would allow us to generalize our ILP encoding for process
trees from [27] to sound free-choice workflow nets and can lead to a much more
efficient alignment algorithm on this class in practice. On the more theoretical
level, we want to dive deeper into the complexity structure of alignments, in
particular, regarding the influence of different parameters of the models.



Complexity of Alignments on Sound Free-Choice Workflow Nets 21

References

[1] W. M. P. van der Aalst. “Verification of workflow nets.” In: Application
and Theory of Petri Nets 1997. ICATPN 1997. Ed. by P. Azéma and G.
Balbo. Vol. 1248. LNCS. Berlin, Heidelberg: Springer Berlin Heidelberg,
1997, pp. 407–426. isbn: 978-3-540-69187-7. doi: 10.1007/3-540-63139-
9_48.

[2] W. M. P. van der Aalst. “Workflow Verification: Finding Control-Flow
Errors Using Petri-Net-Based Techniques.” In: Business Process Manage-
ment. Models, Techniques, and Empirical Studies. Ed. by W. M. P. van
der Aalst, J. Desel, and A. Oberweis. Vol. 1806. LNCS. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2000. Chap. 11, pp. 161–183. isbn: 978-3-540-
45594-3. doi: 10.1007/3-540-45594-9_11.

[3] A. Adriansyah. “Aligning observed and modeled behavior.” PhD thesis.
Technische Universiteit Eindhoven, 2014. isbn: 978-90-386-3574-3. doi:
10.6100/IR770080.

[4] A. V. Aho and T. G. Peterson. “A Minimum Distance Error-Correcting
Parser for Context-Free Languages.” In: SIAM Journal on Computing 1.4
(1972), pp. 305–312. doi: 10.1137/0201022.

[5] V. Bloemen, J. van de Pol, and W. M. P. van der Aalst. “Symbolically
Aligning Observed and Modelled Behaviour.” In: Application of Concur-
rency to System Design. ACSD 2018. IEEE Computer Society, 2018, pp. 50–
59. isbn: 978-1-5386-7013-2. doi: 10.1109/ACSD.2018.00008.

[6] M. Boltenhagen, T. Chatain, and J. Carmona. “Generalized Alignment-
Based Trace Clustering of Process Behavior.” In: Application and Theory
of Petri Nets and Concurrency. PETRI NETS 2019. Ed. by S. Donatelli
and S. Haar. Vol. 11522. LNCS. Cham: Springer International Publishing,
2019, pp. 237–257. isbn: 978-3-030-21571-2. doi: 10.1007/978-3-030-
21571-2_14.

[7] M. Boltenhagen, T. Chatain, and J. Carmona. “Optimized SAT encoding
of conformance checking artefacts.” In: Computing 103.1 (2021), pp. 29–
50. doi: 10.1007/s00607-020-00831-8.

[8] J. Carmona, B. F. van Dongen, A. Solti, and M. Weidlich. Conformance
Checking. Relating Processes and Models. Cham: Springer International
Publishing, 2018. isbn: 978-3-319-99413-0. doi: 10.1007/978- 3- 319-
99414-7.

[9] J. Carmona, B. F. van Dongen, and M. Weidlich. “Conformance Checking:
Foundations, Milestones and Challenges.” In: Process Mining Handbook.
Ed. by W. M. P. van der Aalst and J. Carmona. Vol. 448. LNBIP. Cham:
Springer International Publishing, 2022. Chap. 5, pp. 155–190. isbn: 978-
3-031-08847-6. doi: 10.1007/978-3-031-08848-3_5.

[10] A. Cheng, J. Esparza, and J. Palsberg. “Complexity Results for 1-safe
Nets.” In: Foundations of Software Technology and Theoretical Computer
Science. FSTTCS 1993. Ed. by R. K. Shyamasundar. Vol. 761. LNCS.
Berlin, Heidelberg: Springer, 1993, pp. 326–337. isbn: 978-3-540-48211-6.
doi: 10.1007/3-540-57529-4_66.

https://doi.org/10.1007/3-540-63139-9_48
https://doi.org/10.1007/3-540-63139-9_48
https://doi.org/10.1007/3-540-45594-9_11
https://doi.org/10.6100/IR770080
https://doi.org/10.1137/0201022
https://doi.org/10.1109/ACSD.2018.00008
https://doi.org/10.1007/978-3-030-21571-2_14
https://doi.org/10.1007/978-3-030-21571-2_14
https://doi.org/10.1007/s00607-020-00831-8
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1007/978-3-031-08848-3_5
https://doi.org/10.1007/3-540-57529-4_66


22 C.T. Schwanen et al.

[11] A. Cheng, J. Esparza, and J. Palsberg. “Complexity results for 1-safe nets.”
In: Theoretical Computer Science 147.1-2 (1995), pp. 117–136. doi: 10.
1016/0304-3975(94)00231-7.

[12] J. Desel and J. Esparza. “Reachability in cyclic extended free-choice sys-
tems.” In: Theoretical Computer Science 114.1 (1993), pp. 93–118. doi:
10.1016/0304-3975(93)90154-L.

[13] J. Desel and J. Esparza. Free Choice Petri Nets. Cambridge Tracts in The-
oretical Computer Science 40. Cambridge: Cambridge University Press,
1995. isbn: 978-0-521-01945-3. doi: 10.1017/CBO9780511526558.

[14] J. Desel and J. Esparza. “Shortest Paths in Reachability Graphs.” In:
Journal of Computer and System Sciences 51.2 (1995), pp. 314–323. doi:
10.1006/jcss.1995.1070.

[15] B. F. van Dongen. “Efficiently Computing Alignments. Using the Extended
Marking Equation.” In: Business Process Management. BPM 2018. Ed. by
M. Weske, M. Montali, I. Weber, and J. vom Brocke. Vol. 11080. LNCS.
Cham: Springer International Publishing, 2018, pp. 197–214. isbn: 978-3-
319-98647-0. doi: 10.1007/978-3-319-98648-7_12.

[16] J. Esparza. “Reachability in live and safe free-choice Petri nets is NP-
complete.” In: Theoretical Computer Science 198.1-2 (1998), pp. 211–224.
doi: 10.1016/S0304-3975(97)00235-1.

[17] J. Esparza. “Decidability and complexity of Petri net problems — An
introduction.” In: Lectures on Petri Nets I: Basic Models: Advances in
Petri Nets. Ed. by W. Reisig and G. Rozenberg. Vol. 1491. LNCS. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1998, pp. 374–428. isbn: 978-3-
540-49442-3. doi: 10.1007/3-540-65306-6_20.

[18] J. Esparza and M. Nielsen. “Decidability Issues for Petri Nets.” In: BRICS
Report Series 1.8 (1994). doi: 10.7146/brics.v1i8.21662.

[19] N. D. Jones, L. H. Landweber, and Y. E. Lien. “Complexity of some prob-
lems in Petri nets.” In: Theoretical Computer Science 4.3 (1977), pp. 277–
299. doi: 10.1016/0304-3975(77)90014-7.

[20] H. Kourani and S. J. van Zelst. “POWL: Partially Ordered Workflow
Language.” In: Business Process Management. BPM 2023. Ed. by C. Di
Francescomarino, A. Burattin, C. Janiesch, and S. Sadiq. Vol. 14159. LNCS.
Cham: Springer Nature Switzerland, 2023, pp. 92–108. isbn: 978-3-031-
41620-0. doi: 10.1007/978-3-031-41620-0_6.

[21] M. de Leoni and A. Marrella. “Aligning Real Process Executions and Pre-
scriptive Process Models through Automated Planning.” In: Expert Sys-
tems with Applications 82 (2017), pp. 162–183. doi: 10.1016/j.eswa.
2017.03.047.

[22] A. Mansfield. “On the computational complexity of a merge recognition
problem.” In: Discrete Applied Mathematics 5.1 (1983), pp. 119–122. doi:
10.1016/0166-218X(83)90021-5.

[23] G. Pighizzini. “How Hard Is Computing the Edit Distance?” In: Informa-
tion and Computation 165.1 (2001), pp. 1–13. doi: 10.1006/inco.2000.
2914.

https://doi.org/10.1016/0304-3975(94)00231-7
https://doi.org/10.1016/0304-3975(94)00231-7
https://doi.org/10.1016/0304-3975(93)90154-L
https://doi.org/10.1017/CBO9780511526558
https://doi.org/10.1006/jcss.1995.1070
https://doi.org/10.1007/978-3-319-98648-7_12
https://doi.org/10.1016/S0304-3975(97)00235-1
https://doi.org/10.1007/3-540-65306-6_20
https://doi.org/10.7146/brics.v1i8.21662
https://doi.org/10.1016/0304-3975(77)90014-7
https://doi.org/10.1007/978-3-031-41620-0_6
https://doi.org/10.1016/j.eswa.2017.03.047
https://doi.org/10.1016/j.eswa.2017.03.047
https://doi.org/10.1016/0166-218X(83)90021-5
https://doi.org/10.1006/inco.2000.2914
https://doi.org/10.1006/inco.2000.2914


Complexity of Alignments on Sound Free-Choice Workflow Nets 23

[24] A. Rozinat and W. M. P. van der Aalst. “Conformance checking of pro-
cesses based on monitoring real behavior.” In: Information Systems 33.1
(2008), pp. 64–95. doi: 10.1016/j.is.2007.07.001.

[25] W. J. Savitch. “Relationships Between Nondeterministic and Deterministic
Tape Complexities.” In: Journal of Computer and System Sciences 4.2
(1970), pp. 177–192. doi: 10.1016/S0022-0000(70)80006-X.

[26] C. T. Schwanen, W. Pakusa, and W. M. P. van der Aalst. “A Dynamic Pro-
gramming Approach for Alignments on Process Trees.” In: Process Mining
Workshops. ICPM 2024 International Workshops, Lyngby, Denmark, Oc-
tober 14–18, 2024, Revised Selected Papers. ICPM 2024. Ed. by A. Delgado
and T. Slaats. Vol. 533. LNBIP. Cham: Springer Nature Switzerland, 2025,
pp. 84–97. isbn: 978-3-031-82224-7. doi: 10.1007/978-3-031-82225-4_7.

[27] C. T. Schwanen, W. Pakusa, and W. M. P. van der Aalst. “Process Tree
Alignments.” In: Enterprise Design, Operations, and Computing. EDOC
2024. Ed. by J. Borbinha, T. Prince Sales, M. Mira Da Silva, H. A. Proper,
and M. Schnellmann. Vol. 15409. LNCS. Cham: Springer International
Publishing, 2025. isbn: 978-3-031-78337-1. doi: 10.1007/978- 3- 031-
78338-8_16.

[28] F. Taymouri and J. Carmona. “A Recursive Paradigm for Aligning Ob-
served Behavior of Large Structured Process Models.” In: Business Pro-
cess Management. BPM 2016. Ed. by M. La Rosa, P. Loos, and O. Pastor.
Vol. 9850. LNCS. Cham: Springer International Publishing, 2016, pp. 197–
214. isbn: 978-3-319-45348-4. doi: 10.1007/978-3-319-45348-4_12.

[29] F. Taymouri and J. Carmona. “Model and Event Log Reductions to Boost
the Computation of Alignments.” In: Data-Driven Process Discovery and
Analysis. SIMPDA 2016. Ed. by P. Ceravolo, C. Guetl, and S. Rinderle-Ma.
Vol. 307. LNBIP. Cham: Springer International Publishing, 2018, pp. 1–
21. isbn: 978-3-319-74160-4. doi: 10.1007/978-3-319-74161-1_1.

[30] A. Valmari. “The State Explosion Problem.” In: Lectures on Petri Nets I:
Basic Models: Advances in Petri Nets. Ed. by W. Reisig and G. Rozenberg.
Vol. 1491. LNCS. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998,
pp. 429–528. isbn: 978-3-540-49442-3. doi: 10.1007/3-540-65306-6_21.

[31] R. A. Wagner. “Order-n Correction for Regular Languages.” In: Commu-
nications of the ACM 17.5 (1974), pp. 265–268. doi: 10.1145/360980.
360995.

[32] M. K. Warmuth and D. Haussler. “On the Complexity of Iterated Shuffle.”
In: Journal of Computer and System Sciences 28.3 (1984), pp. 345–358.
doi: 10.1016/0022-0000(84)90018-7.

[33] G. Winskel. “Petri Nets, Algebras, Morphisms, and Compositionality.” In:
Information and Computation 72.3 (1987), pp. 197–238. doi: 10.1016/
0890-5401(87)90032-0.

[34] S. J. van Zelst and S. J. J. Leemans. “Translating Workflow Nets to Process
Trees: An Algorithmic Approach.” In: Algorithms 13.11 (2020). doi: 10.
3390/a13110279.

https://doi.org/10.1016/j.is.2007.07.001
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1007/978-3-031-82225-4_7
https://doi.org/10.1007/978-3-031-78338-8_16
https://doi.org/10.1007/978-3-031-78338-8_16
https://doi.org/10.1007/978-3-319-45348-4_12
https://doi.org/10.1007/978-3-319-74161-1_1
https://doi.org/10.1007/3-540-65306-6_21
https://doi.org/10.1145/360980.360995
https://doi.org/10.1145/360980.360995
https://doi.org/10.1016/0022-0000(84)90018-7
https://doi.org/10.1016/0890-5401(87)90032-0
https://doi.org/10.1016/0890-5401(87)90032-0
https://doi.org/10.3390/a13110279
https://doi.org/10.3390/a13110279

	Complexity of Alignments on Sound Free-Choice Workflow Nets

